
automatic computing machinery 37

A total of 2206 vacuum tubes are used in the computer. Over half of

these tubes are high-vacuum diodes, types 6AL5, which were used in pref-

erence to crystal diodes for matrix circuits.

Design and construction of the SPEC started in July 1949, and the first

problem was solved on February 1, 1950. It was in continuous operation at

the NEPA Project from the spring of 1950 until February 1951 and is being
installed at the Oak Ridge National Laboratory. The computer will be called

the "ORACLE" which is derived from Oak Ridge Automatic Computer for

Linear Equations.

During the operating period, the computer was in an operating condition

for approximately 85% of the total available time, with 15% of the time

devoted to testing and servicing. Most machine errors were detected during

the solution of problems, although test problems were used for periodic

checks to assure proper operation of the machine. Check circuits, with visual

and audible indications, are employed to detect improper operation of the

machine in the most critical places, but no complete checking system is

employed.
Throughout the period of operation, the computer was exceedingly use-

ful as a means of obtaining solutions to systems of simultaneous, linear

equations up to the limit of its useful capacity. In addition, problems in-

volving matrix products, Fourier analysis, numerical integration, and

matrix inversion were undertaken with considerable savings in time and

effort.
The author wishes to acknowledge the outstanding contribution of Mr.

V. G. Lewis and his staff of technicians at the NEPA facility in Oak Ridge
in the construction and assembly of the computer. Special recognition is due

Mr. L. C. Oakes for his valuable contributions in testing, servicing and

operating the machine.
J. J. Stone

Oak Ridge National Laboratory

Oak Ridge, Tenn.

1 Nuclear Energy for the Propulsion of Aircraft Project, conducted by Fairchild Engine
and Airplane Corporation under special contract with the United States Air Force.

Discussions

FLOATING OPERATIONS ON THE EDSAC

Summary. The difficulties which arise when programming calculations

for large automatic calculating machines which have a fixed decimal point

are discussed. This leads to a consideration of the possibility of using

floating decimal arithmetic for certain kinds of calculations. A method by

which floating decimal arithmetic can be carried out with any fixed decimal-

point machine is outlined and the scheme adopted for use with the EDSAC

is described in detail.
This scheme is based on a special kind of subroutine which we call

interpretive. This enables the programmer to use a new order code of his own

choice. The 'orders' of a programme drawn up with such a code are selected

under the action of the interpretive subroutine and interpreted in terms of

sequences of orders which perform the required operations. With the EDSAC

38 automatic computing machinery

a single address 'order' code has been adopted, similar to the ordinary order

code, in which the arithmetical 'orders' are interpreted in terms of floating

decimal arithmetic. Special 'orders' for simplifying counting operations and

the modification of other 'orders' are provided. The 'order' code is described

in detail and an example is given of a programme drawn up using this code.

Other topics discussed are the use of auxiliary subroutines with the inter-

pretive subroutine, a method of facilitating programme assembly, and tech-

niques for using the input tape as a form of auxiliary store. Finally the times

of operation of the individual 'orders' of the code are given, together with an

estimate of the factor by which the calculation time is increased as a result

of using floating decimal arithmetic for an entire calculation.

Introduction. One of the most tedious tasks arising in the programming of

calculations for solution by fixed decimal-point machinery is to arrange the

calculation so that all quantities concerned remain within the limits of the

machine and yet are expressed to an accuracy sufficient to ensure the desired

precision in the results. Our experience with the Edsac has shown that if

this task can, in some way, be relegated to the machine then the time taken

to prepare a programme after a problem has been understood is considerably

reduced.
The problem does not arise with machines designed to operate directly

with numbers expressed in the floating radix form. Numbers in this form are

represented by a ■ r". The first machine of this kind was the Bell Telephone

Laboratories Relay Computer Model V(1). This is a decimal machine (that

is, r = 10) in which 1 > |a| > 0.1, 19 > p > — 19 and a is expressed to an

accuracy of seven significant figures. Since this was completed all important

relay machines have been equipped with similar facilities. No electronic

machine of this kind has yet been built but we would remark that in our

opinion an electronic machine provided with a floating point arithmetical

unit would be a powerful computing instrument even if it had a relatively

slow store, a magnetic drum, for example. It would be particularly suitable

for a laboratory which had to solve quickly a wide variety of problems as

they are presented.

For a fixed decimal-point machine the usual arrangement is to associate

scale factors with some or all of the quantities occurring in the calculation.

These scale factors are of two kinds. First certain quantities can be asso-

ciated with fixed scale factors which remain unaltered throughout the cal-

culation. Their value must be chosen so that the quantities concerned do

not exceed capacity and yet can be represented at all times with sufficient

accuracy. This is the problem of providing 'elbow room.' It may not be pos-

sible to satisfy both requirements by the use of a single fixed scale factor and

it is then necessary to introduce an adjustable scale factor, that is, a scale

factor which is altered during the course of the calculation. It may be

adjusted either continually or occasionally in accordance with some criterion

or it may take a preassigned set of values. All these things the coder has to

think about if the calculation is to be arranged to use the least possible ma-

chine time. The difficulties arising will vary from one calculation to another

and may be trivial, moderately complex, or really hard. The individual na-

ture of calculations and the necessity for a mathematical understanding of

them, however, makes a general solution to the problem on these lines un-

attractive to attempt. The only way in which the difficulties may be avoided

is to associate every number occurring in the calculation with its own ad-

automatic computing machinery 39

justable scale factor. The scale factors can be stored most economically if

they are powers of 2 or of 10. In the latter case the above scheme virtually

amounts to programming a floating decimal point. This is the solution that

we feel should be adopted for many kinds of calculation.

The floating decimal form of representation of numbers is especially

useful when it is required to evaluate algebraic expressions. For example, to

code the evaluation (au2 + bu + c)/(du + e) with a fixed decimal-point

machine can be very troublesome if it is required to maintain accuracy over

the entire range of numbers. If the reader has any doubts about this he is

advised to try it. If floating decimal arithmetic is used, then the coding

requires little thought and is quite direct.

It is the purpose of this paper to describe a method by which floating

decimal arithmetic can be carried out on fixed decimal-point machines, and

in particular to describe the scheme adopted for the EDSAC.

General considerations. The following remarks are fairly general and apply

to almost any machine although certain features mentioned, for example,

short and long locations, are made with the EDSAC in mind.

The most convenient way to programme operations on numbers ex-

pressed in the floating decimal form is by means of a special type of sub-

routine which we call interpretive. This enables words similar to those repre-

senting ordinary machine orders to be interpreted in terms of floating decimal

operations. Such words will be referred to as 'orders' (with quotation marks).

Each 'order' resembles an ordinary machine order but is never obeyed as

such by the control circuits of the machine. Instead, 'orders' are selected in a

definite sequence by the action of the interpretive subroutine and interpreted

in accordance with a preassigned 'order' code, by means of sequences of orders

which form part of the interpretive subroutine. The selective action of the

interpretive subroutine will be referred to as the 'control' (in quotation

marks). The advantage of such interpretive subroutines is that the

'order' code may be chosen to suit the convenience of the programmer.

There need be no relation between the form of the 'order' code and

the ordinary code of the machine. However, we have become so familiar

with the ordinary EDSAC order code that a similar single address 'order'

code has been adopted for the interpretive subroutines. Interpretive sub-

routines have also been placed in the EDSAC library for carrying out

arithmetical operations on complex numbers and on double-precision

numbers.

When representing floating decimal numbers in a fixed decimal-point

machine it is most economical to pack both the numerical part and the

exponent into a single storage location. This means, of course, that the

numerical part of the number has fewer binary digits to represent it than

would normally be available. However, they are all significant whereas in

fixed decimal-point working digits are thrown away to provide 'elbow room.'

In both cases accuracy may be lost owing to cancellation of leading digits at

one end of a number and to rounding-off errors at the other.

Two long and two short storage locations are set aside to form a kind of

'arithmetical unit.' One long location holds the numerical part of a number

and one short location holds the exponent. Together they form the floating

decimal accumulator. In a similar fashion the other long location and the

other short location form the floating decimal register.

40 AUTOMATIC COMPUTING MACHINERY

An arithmetical 'order' first causes a subroutine to select and unpack the

operand and place the numerical part and the exponent into a further pair of

storage locations—the 'multiplier register.' In the case of an add 'order' the

operand is then added to the number held in the floating decimal accumula-

tor. This is done as follows. Let a<>, aa, and as denote the numerical parts of the

operand, augend, and sum respectively, and let po, pa, and p„ similarly

denote their exponents. Then we have

as10p' = [a0 + fla10-(í,°-í"')]10í'° po > pa

= [öolO-^«-"»' + oaJlO"» po < pa.

The subtract 'order' works in a similar fashion. A register 'order' places the

operand in the floating decimal register. Other 'orders' enable the product of

the operand with a number held in the floating decimal register to be added

to or subtracted from the number held in the floating decimal accumulator.

The transfer order causes the number held in the floating decimal accumula-

tor to be converted to standard form, packed, and finally transferred to the

store; the floating decimal accumulator is then 'cleared' by replacing the

number held in it by zero, that is, by the special number 010-63. The input

'order' causes the two parts of a number to be read from the input tape,

packed, and transferred to the store. The output 'order' causes the numerical

part and the exponent of the number held in the floating decimal accumula-

tor to be printed on the same line in two adjacent columns on the page of the

teleprinter.

The use of two separate storage locations for the floating decimal accumu-

lator allows the range and accuracy of numbers held therein to be greater

than those held in a single storage location elsewhere. This enables products

to be accumulated without loss of accuracy due to intermediate rounding-

off errors.

The scheme adopted for the EDSA C. The interpretive subroutine that has

been developed to carry out floating decimal arithmetic with the Edsac will

now be described in more detail. Throughout this and the following section

references to specific features or conventions used with the Edsac have been

avoided as far as possible but the following terms are used at least once:

initial orders, control combinations, preset parameters (not to be confused

with the current parameter defined below), short and long locations and the E

order. Detailed descriptions of all these features can be found in reference 2.

The following abbreviations will be adopted :

F(A) denotes the floating decimal number held in the floating decimal

accumulator

F(R) denotes the floating decimal number held in the floating decimal

register

S(mD) denotes the long storage location having address m

S(mF) denotes the short storage location having address m

F(mD) denotes the floating decimal number held in S{mD)

F(mF) denotes the floating decimal number held in SimF)

CimD) denotes the ordinary number held in S{mD)

C(mF) denotes the ordinary number held in S(mF)

Number representation. The method described above of packing the nu-

merical part a and the exponent p of a floating decimal number a-10p in a

AUTOMATIC computing machinery 41

single storage location has been adopted. With the Edsac it amounts to

representing the floating decimal number by the ordinary (fractional)

number p2~* + a2-7, where a is expressed with an accuracy of 28 binary

digits and lies in the range (1 > \a\ > 0.1) and p is an integer such that

63 > p > — 63. Zero has the special representation 010~63. When numbers

are transferred from the floating decimal accumulator to the store they are

automatically transferred to the standard representation.

The 'order' code. Since the 'orders' are similar in form to the ordinary

machine orders of the EDSAC they will be presented in the conventional form

adopted for the latter. The 'orders' of the code fall into two classes, arith-

metical and organizational. The arithmetical 'orders' can refer either to short

or to long storage locations according as the 'order' is terminated with the

code letter F or D. This is the usual EDSAC convention. If, however, these

'orders' are terminated by xA instead of D or A instead of F then a number,

known as the current parameter, held in a certain storage location, will be

added to the address of the order before it is obeyed. Among the organiza-

tional 'orders' are two—the P and the F orders—which enable the current

parameter to be set to some initial value and subsequently adjusted after

each cycle of a repetitive operation. In this way an arithmetical 'order' can

refer to different numbers during different cycles of the calculation. These

orders are described in more detail below. The scheme is similar in some

respects to the way in which orders are modified in the Manchester Univer-

sity Electronic Computer Mk. 2. In this machine a built-in facility enables

a number held in one of 8 registers—called the B registers—to be added to

the address of an order immediately before that order is obeyed.

The arithmetical 'orders'

AmD Add F(mD) to F(A)
BmD Subtract F(mD) from F (A)
HmD Replace F(R) by F(mD)
VmD Add the product F(R) ■ F(mD) to F (A)
NmD Subtract the product F(R) ■ F(mD) from F(A)
DmD Replace F (A) by F(A)/F(mD)
<bmD Replace F(mD) by F (A) and F (A) by 0.10"63
LmD Similar to <bmD but in addition the non-standard content of the

floating decimal accumulator is printed as negative sign or space ;

exponent (2 figs.); space; negative sign or space; 8 decimal

digit fraction. For example, — 98.283742 would be printed as

02 - 98283742.
AmD Input a sequence of numbers on the tape terminated by X into the

locations mD, (m — 2)D, etc. Each number is punched in the

following way: Characters to represent the exponent; sign;

numerical part. In the numerical part the decimal point is under-

stood to be before the first digit punched. Any number of digits

may be punched. For example, — 98.283742 would be punched
as 2 — 98283742. X is punched before the first number of the
sequence and then the sequence is copied on to the data tape in

the reverse direction. Numbers read into the machine must have

exponents in the range — 16 to + 15, so that it can be repre-

sented by a single tape character.

42 AUTOMATIC COMPUTING MACHINERY

The organizational 'orders'

Conditional order: if F(A) > 0 transfer 'control' to the 'order'

which stands in S{mF) ; otherwise replace F(A) by | F(A) | and

proceed with the next 'order.'

Transfer control of the machine to the order which stands in

S(mF), that is, return to the machine order code.

Transfer 'control' to the X-auxiliary whose entry 'order' stands

in S(mF). When the X-auxiliary is completed it will return

'control' to the 'order' immediately following the X 'order.'

Transfer 'control' to the 'order' standing in S(mF).

The function of these 'orders' is described below

The P and F 'orders.' These orders are provided to facilitate the coding of

cycles of orders and of cycles within cycles, etc. Each cycle of 'orders' or

'loop' is started by a P 'order' and terminated by an F 'order.' The two are

said to correspond. This correspondence is similar to that between left and

right handed brackets in a lengthy algebraic formula if the direction left to

right in the formula corresponds to the direction in which 'control' is nor-

mally advanced. Associated with each loop of 'orders' is a parameter whose

value is set, initially, by the P 'order' and is subsequently adjusted by the F

'order.' The current parameter (see above) associated with any particular

'order' of a loop is the parameter set by the P 'order' which the 'control'

encountered last. It is now possible to give a formal description of the func-

tion of these 'orders.'

P m F Record a new parameter—the current parameter of the following

'orders'—and set it to the value — m2~lb

F m F If the current parameter is < — m2~1&, increase its value by m2~16,

return 'control' to the 'order' immediately following the corre-

sponding P 'order' ; otherwise proceed with the following 'order'

after restoring the current parameters to the value it had before

the corresponding P 'order.'

The above description should be sufficient to enable a programmer to

use the P and F orders in a programme. We now give a detailed description

of the means by which the effects of these 'orders' are achieved.

The number of parameters has been limited to 3. This restriction, al-

though not essential, is reasonable as problems involving loops within loops

more than three 'deep' are likely to occur very rarely.

The parameters are stored together with the addresses of the locations of

the corresponding P 'orders,' in 3 long storage locations S(hD), S(h + 2)D,

and S(h + 4)D. At any stage in the programme S(hD) contains the current

parameter, S(h + 2)D the previous parameter, and S(h + 4)Z> the previous

parameter but one.

A P 'order,' for example, P m Fin S(nF) causes C(h + 4)Z) to be replaced

by C(h + 2)D, C(h + 2)D to be replaced by C{hD), and C(hD) to be re-
placed by the number — m2~1& + w2-33. When the corresponding F 'order,'

F q F is encountered the following operations take place. The size of the

current parameter (the number — jm2-16 in the short storage location

S(h + l)F) is tested. If this number is less than — q-2~lb it is increased by

the amount q • 2~u and 'control' is transferred to the 'order' which stands in

Mm F

CmF

XmF

GmF

PmF\
FmF\

automatic computing machinery 43

S(n + 1)F, where n-2-16 is the number in the short location S(hF). Other-

wise C(hD) is replaced by C(h + 2)D, C(h + 2)D is replaced by C(h + 4)Z>
and then 'control' proceeds with the next 'order.'

Example. The action of the 'orders' and the context in which they are

meant to be used may be more clearly understood from a study of the follow-

ing programme for the calculation of a root of an algebraic equation by the

Newton-Raphson iterative process.

Location of data: letf(x) = £ a¿cn~r = 0 be the equation to be solved.
r=o

It is assumed that the coefficients an, an-i, • • -, ao are in .S(IOOD), 5(98D),

• ■ -, 5(100 — 2w)D. The initial approximation xo stands in S(6D) and all

subsequent approximations are placed there. A small quantity 8, used in the

convergence criterion, stands in 5(8D).

Formula used : the iterative formula

Xn+1 = Xn — f(xn)/f'(Xn)

is used. The iteration is arranged to terminate when \xn — xn-i\ < 8.

f(x) is calculated from the recurrence relations

go = a0; qr+i = qr-x + ar+i; qn = f(x)

and f'(x) is calculated from the similar recurrence relations

go' = 0; qT+1' = q/-x + qr; qn' = f'(x).

The orders of the programme are listed below. For those readers who are

not familiar with the Edsac conventions it may be stated that the code

letter 6 provides for a system of numbering relative to the order immediately

following a control combination G K. Thus, in the example below, the 'order'

M 18 0 refers to the 'order' B 8 D.

'clear' floating decimal accumulator

'clear' ; S(10D)
place xn in the floating decimal register

pr+l = Xp'r + P,

pr+1 = Xpr + ar+lJ

cycle n + 1 times

/(*.)//'(*») to S(10D)

*n+l = X„ — f(xn)/f'(Xn)

form modulus of (xn+i — xn)

subtract 5
discriminate

'clear' floating decimal accumulator

print the root x

44 automatic computing machinery

Auxiliary subroutines. To facilitate the coding of entire calculations in

floating decimal arithmetic it is useful to extend the range of action of

the interpretive subroutines by the addition of auxiliary subroutines for

carrying out common numerical processes. The auxiliary subroutines, hence-

forth referred to simply as auxiliaries, are of two kinds. The first kind con-

sists entirely of ordinary orders and will be referred to as C auxiliaries.

Auxiliaries of the second kind consist largely of 'orders' and hence themselves

use the interpretive subroutine. They will be referred to as X auxiliaries.

C auxiliaries. These are called in by a C 'order' which transfers control to

the entry order of the auxiliary. This then carries out the appropriate calcula-

tion by means of machine orders. When this has been completed control is

transferred back to a point in the interpretive subroutine. This causes the

'control' to resume the obeying of 'orders' starting at the 'order' immediately

following the C 'order.' Thus the C auxiliary can be considered as being an

extension of the 'order' code and used as such.

A typical C auxiliary is one which replaces F(A) by its square root. The

way in which this is done using ordinary orders is as follows. Let pa and na

denote the exponent and numerical part of F(A). Two cases arise: If pa is

even, p, — pa/2 and n, = -4n~a; if pa is odd, then p, = (pa + l)/2 and w,

= Vwa/10. In both cases the arithmetical operations can be done most simply

by using the ordinary techniques of fixed decimal-point working.

C auxiliaries are almost as fast and as economical in storage space as the

corresponding routines for fixed decimal-point working. The extra orders

required to handle the exponent are largely offset by the orders that would

otherwise be required to cater for a large range of the numerical part.

X auxiliaries. These are called in by the special 'order' X m F, where m

is the location of the entry order of the auxiliary. When the X auxiliary has

completed its part of the calculation 'control' is returned to the 'order'

immediately following the X 'order' which called the auxiliary into use. This

cannot be done by the same method as is used for the C auxiliary because the

X auxiliary itself uses the interpretive subroutine. Instead the X 'order'

causes the address of the location of the next 'order' to be stored in a certain

location for future reference. This record is called the link. At the end of the

auxiliary is a C 'order' which directs control to a set of orders within the

interpretive subroutine which use the link to return 'control' to the main

programme.

X auxiliaries can use other X auxiliaries. To enable this to be done the

X 'order' causes a list of links to be kept. At any point in the programme the

link at the head of the list refers to the 'order' to which 'control' must be

returned after the current subroutine has been finished with. The number of

links in the list measures the depth to which 'control' has passed within the

auxiliaries. A reference number which is adjusted every time a link is added

to or removed from the list records this depth. This enables the link at the

head of the list to be selected by those orders of the interpretive subroutine

which are called into use when the X auxiliary has been completed.

The Directory. Reference to the auxiliaries can be facilitated, if desired,

by using the following scheme. The auxiliaries are first enumerated in the

order in which they are to be read from the input tape into the store. Thus

auxiliary no. 1 is the first auxiliary read from the tape, auxiliary no. 2 is the

AUTOMATIC COMPUTING MACHINERY 45

second auxiliary read from the tape, and so on. When the auxiliaries have

been ordered in this way the m-th auxiliary can be called in by the 'order'

X m L or C m L (depending on whether it is an X or a C auxiliary).

This is achieved by means of a table of switching orders—called a

directory—stored in consecutive storage locations beginning with S(hF).

Each entry directs 'control' (or control) to the first 'order' (or order) of one

of the auxiliaries. If, for example, the m-th auxiliary is an X auxiliary whose

first 'order' stands in S(nF), then the m-th entry in the directory, that is,

the entry standing in S(h + m)F, is the 'order' gn F. Thus to call in the

auxiliary 'control' is first transferred, by the 'order' X h + m F, to the 'order'

Gn F which in turn transfers 'control' to the first 'order' of the auxiliary.

Similarly, if the m-th. auxiliary is a C auxiliary, the m-th entry is the ordinary

order En F, and the auxiliary is called in by the 'order' C h + m F.

The directory is assembled by the initial orders as the auxiliaries are read

from the tape into the store. At the same time the address of the locations,

S(hF) of the first entry in the table is placed in the preset parameter location

L so that X m + h F and C m + h F can be punched as X m L and C m L
respectively.

The advantage of the scheme is that the master routine can be drawn up

in the final form once the set of auxiliaries have been ordered. It is not

necessary for the coder to keep a record of the locations in the store of indivi-

dual auxiliaries. In effect, the scheme shifts the burden of 'book-keeping'

from the programmer to the machine. Similar principles are used by the

assembly subroutines (for programme assembly) which already exist in the

Edsac library of subroutines (see reference 2).

The use of the input tape as a form of auxiliary store. The Edsac is not

provided with an auxiliary store so that for many problems the shortage of

storage space is a real difficulty. This difficulty may be partly overcome by

using the paper tape input medium as a form of auxiliary store. There are

two ways in which this may be done.

The first way, used when the storage requirements grossly exceed those

available, is to carry out the calculation in stages, using the input tape to

store numbers and 'orders' not required throughout the calculation. This

method will be referred to as piecewise control of the calculation.

In the second method the 'orders' of the master routine are placed on the

tape and read into the store one at a time, each being obeyed immediately

after it has been read. This method is used when the master routine consists

of a lengthy sequence of 'orders' not many of which are repeated. If none of

these are repeated the scheme takes no longer than putting the complete

master routine into the store and then entering it. The principal advantage

is that no storage space need be allocated to the master routine. A further

advantage is that the progress of the calculation is apparent from the prog-

ress of the tape. This method of control will be referred to as input control.

In the Manchester University Computer Group, tapes drawn up on these

lines are referred to as job-steering tapes.

Piecewise control. To facilitate this mode of working the A 'order' and the

initial orders can be used as follows.

The A 'order' enables sequences of numbers of any length to be read

from the tape into the store when required, overwriting, if necessary, informa-

tion no longer wanted.

46 AUTOMATIC COMPUTING MACHINERY

If the initial orders are retained intact during the course of the calcula-

tion they can be recalled into use by a C 'order'. In this way 'orders' (or

orders) can be read from the input tape into the store in the usual way at

any time during the calculation. The reading of 'orders' can be halted and

control transferred back to the interpretive subroutine by a suitable control

combination.

The above scheme together with the use of the A 'order' enables quite

complicated problems to be tackled.

Input control. In this scheme a special C auxiliary—the input control

auxiliary—is used. This causes 'orders' to be read from the tape and inter-

preted immediately after they are read. Normally they will be of an arith-

metical character or will call in auxiliary subroutines. The C auxiliary will

continue to read and obey such 'orders' until this mode of 'control' is ter-

minated by a suitable C 'order' on the tape itself. This directs control to a

point within the interpretive subroutine and in this way causes 'control' to

be returned to the 'order' immediately following the C 'order' which called

the input control auxiliary into use.

Times of operations of the 'orders.' The times of execution of the individual

'orders' are as follows :

'orders' Times of execution

A,B 90 ms.
V,N 105 ms.

H, C, G, X, M, P, F 50 ms.
D 140 ms.
<b 80 ms.

The times of operation of the L and A 'orders' are largely determined by

the speed of the input and output units. The teleprinter can print six

characters per second and the tape-reader can read about 25 characters per

second. These rates allow for the time taken for binary to decimal conversion

and vice versa.

For comparison it should be stated that each ordinary order of the Edsac

takes 1| ms. with the exception of the multiplication orders, Fand N, which

take 6 ms. each.

From a direct comparison it would seem that the floating 'orders,' other

than those used for reading and writing, are about 60 times as slow as the

machine orders and hence that a programme using the interpretive sub-

routine would be slower by the same factor. This is not altogether true be-

cause in such a programme fewer 'orders' are needed than would otherwise be

necessary as there are no scale factors to deal with and the techniques for

counting and for the modification of 'orders' have been streamlined. More-

over, the time taken by the C auxiliaries is about the same as that taken by

the corresponding subroutine in fixed decimal-point working.

These factors vary from problem to problem but our experience has

shown that the reduction in speed varies from about 20 to 1 to about 4 to 1.

The reduction of the time taken to code a problem has to be experienced to be

believed ! „ . „
R. A. Brooker

tt • : *, .L .• i T u D- J- Wheeler
University Mathematical Laboratory

Cambridge, England

AUTOMATIC COMPUTING MACHINERY 47

The authors wish to thank Dr. M. V. Wilkes for his encouragement and advice in
preparing this paper.

■F. Alt, "A Bell Telephone Laboratories 'Computing Machine—1 and II,' " MTAC,
v. 3, 1948, p. 1-13 and 69-84.

2 M. V. Wilkes, D. J. Wheeler, & S. Gill, The preparation of programmes for an elec-
tronic digital computer, with special reference to the EDSAC and the use of a library of subroutines.
Addison-Wesley Press, Inc., Cambridge, Mass., 1951.

Bibliography of Coding Procedure

The National Bureau of Standards is forming a central library of notes,

reports and technical publications concerned with programming and coding

for electronic digital computers.

The collection of material has in view the possibility of increasing the

efficiency in the use of high speed digital computers. The material will include

for example coding manuals, computing routines, supervisory routines and

codes for generating other codes. Those interested in research and instruction

in coding practices are invited to avail themselves of this material.

Computation laboratories are invited to submit material to this library.

A list of such acquisitions together with a short descriptive review will appear

in the future issues of MTAC; they will be numbered serially for reference.

Material should be sent to the attention of J. H. Wegstein, Computation

Laboratory, National Bureau of Standards, Washington 25, D. C.

Some material of this kind has already been included or reviewed in

MTA C. This bibliography begins with references to eleven such items. The

last four items are new.

1. S. Lubkin, "Decimal point location in computing machines, "MTA C,

v. 3, p. 44-50.
2. Herman H. Goldstine & John von Neumann, Planning and Coding of

Problems for an Electronic Computing Instrument. Institute for Advanced

Study, Princeton, New Jersey.

Part II, v. 1, 1947, 69 p., 21.6 X 27.9 cm. {MTAC, v. 3, p. 54-56]
Part II, v. 3, 1948, iii + 23 p., 21.6 X 27.9 cm. {MTAC, v. 3, p. 541-
542]
Part II, v. 2,1948, 68 p., 7 figs., 21.6 X 27.9 cm. {MTAC, v. 4, p. 44^6]

3. Florence Koons & S. Lubkin, "Conversion of numbers from decimal

to binary form in the EDVAC," {MTAC, v. 3, p. 427-431]
4. M. V. Wilkes, "Programme design for a high-speed automatic calcula-

ting machine," Jn. Sei. Inst. and Phys. in Industry, v. 26, 1949, p. 217-
220. {MTAC, v. 4, p. 116]

5. Anon., Description and Use of the ENIAC Converter Code. Ballistic

Research Laboratories, Technical Note no. 141, Aberdeen Proving

Ground, Maryland, November 1949, 23 pages, mimeographed. {MTAC,

v. 4, p. 170-171]
6. R. W. Hamming, "Error detecting and error correcting codes," Bell

System Technical Jn., v. 29, 1950, p. 147-160. {MTAC, v. 5, p. 40-41]
7. M. V. Wilkes, "Automatic computing," Nature, v. 166, December 2,

1950, p. 942-944. {MTAC, v. 5, p. 171]
8. S. Gill, "The diagnosis of mistakes in programmes on the EDSAC," R.

Soc. London, Proc, v. 206A, 1951, p. 538-554. {MTAC, v. 6, p. 49-50]

	MCOM00741034.pdf

