
OTHER  AIDS  TO  COMPUTATION 61

OTHER AIDS TO COMPUTATION

ANALOGUE CALCULATION OF POLYNOMIAL AND

TRIGONOMETRIC EXPANSIONS

Introduction: The use of polynomials and trigonometric expansions in

science and engineering is well known, and hence the importance of machine

application for their rapid evaluation does not need strong defense. In fact,

the multiplicity of special purpose polynomial computers that have been de-

signed and built points to the great desire for machine treatment of these

functions. Although the method described in this paper is applicable to dig-

ital as well as analogue machines, the original intent of the authors was

slanted towards the use of the analogue machine, and hence the presentation

has an analogue machine background. The significance and importance of

the new method is its simplicity and its use of standard computing machine

equipment.

The Vector Multiplier: The key process which leads to the new method

is the automatic multiplication of an arbitrary pair of vectors. The present

paper will be limited to the treatment of the complex vector (a + ib). The

product of two such vectors, Z\ = x\ + iyi and z2 = x2 + iy2, may be

written

(1) z3 = z\z2 = (xix2 — yiy2) + i(xxy2 + x2yi),

and the operation performed by machine as shown in Figure 1.
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Fig. 1. The Vector Multiplier.

In terms of operation on either the Reeves REAC or the comparable

Goodyear Electronic Machine, X\ and ji in the figure represent input

voltages to a pair of ganged potentiometers or a set of four simple potentiom-

eters (hereinafter referred to as pots) set respectively at x2 and y2. The

outputs of these pots are, except for sign, the four terms on the right of

equation (1). The term y\y2 is put through a sign changer, and then the terms

are put into a pair of summers to obtain outputs which are the negatives of

the real and imaginary parts of z3- The amplifiers used on the machines re-

ferred to automatically change the sign of their summed inputs and hence
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we find the complex vector multiplier described above giving an output

vector which is the negative of the product z%. This is in no way an impedi-

ment in the operation since many operations will call for sign changes, and

hence, on the average the same sign change equipment would be needed even

if the vector product operation produced the product without sign change.

In what follows we shall call the input Z\ the multiplicand and the pot setting

z2 the multiplier.

Polynomials in the complex variable z with real coefficients: It is now
fairly obvious how successive application of the vector multiplication will

produce the successive powers z2, z3, zi, • • •, zm. Figure 2 shows a part of the

circuit diagram for a fifth degree polynomial. Unit voltages enter at the left

and the successive output voltages representing respectively z, — z2, z3,

— s4 and z6 are shown by the vertical output lines. If ganged pots are avail-
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Fig. 2. Circuit which produces the real and imaginary parts of z, — a2, zs,

(z = x + iy)
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z4 and 26.

able, then the * pots and the y pots are set simultaneously by two or more

operations depending on the multiplicity of pots per control. Of course the

servo ganged pots usually provided with analogue calculators may be used

for the ganged pot operation. Figure 3 shows the servo-pot diagram equiva-

lent of Figure 2, with additional sign changers to provide the powers of z

with both signs.
The outputs R{z), - R{z2), R(z3), - Riz4) and R(zb), i.e., the real parts

of the successive powers indicated, are respectively put through a set of pots

which multiply them by the polynomial coefficients a\, a2, a¡, • ■ -, a¡. The

outputs of the coefficient pots, including a pot representing the polynomial

constant, with appropriate signs, then go into a summing amplifier whose

output defines the real part of the polynomial or its negative depending upon

the computing requirements. A comparable process is used to calculate the

imaginary part of the polynomial.

Polynomials in z with complex coefficients : In this instance it is only a

matter of making vector multiplications of the coefficients am into the
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corresponding vector terms R(zm) + il(zm) in place of using simple pot

multiplication. The summing amplifiers used in the latter multiplications

may of course be used for all or part of such multiplications depending upon

the amplifiers input facilities. The real and imaginary parts of the polyno-

mial may be projected on the screen of the cathode ray tube so that a visual

display of the calculated points becomes available. Through this display one

discovers rather quickly characteristics of the polynomial under study such

as dominant terms and zeros.
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Fig. 3. Circuit in which the potentiometers of Fig. 2 have been replaced

by servo multipliers.

Trigonometric forms in one variable : Consider forms reducible to

(2)    T(6) =öo + öi cos 0 + a2 cos 25 + • • • + an cos n B

+ ¿>i sin 8 + Z>2 sin 26 + • • • + bm sin md

in which öi, a2, • • •, an, b,b2, • • •, bm are constants and m, n are integers with

m > n. The form (2) is the real part of the following polynomial :

(3)    ßo + (a-i — ibi)z + (a2 — ib2)z2 + + (ar — ibr)zr

+ ■ ■ ■ + (am — ibm)zm,

in which dn+i, an+2, ■ ■ ■ ,am are all zero. To evaluate the trigonometric form

for any specific range of 6 one has but to evaluate the polynomial (3) over an

x, y range corresponding to cos 6, sin 6.

The resolver servos available on the machines referred to would facilitate

such treatment of the independent variables. In any case, the use of the sine

and cosine columns in the trig table would make it relatively simple to range

the variable appropriately. The treatment of mixed expansions of terms of

the type rn cos nd, rn sin nd is obvious.
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Polynomials in Several Variables : We consider first a polynomial

P(zi, z2) in two variables (zi, z2). In this case the successive powers in Zi and

z2 are respectively formed by the method described above and the required

cross products such as Zin, z2" are formed by the required vector multiplica-

tion. The vector cross product terms are then multiplied by the appropriate

scalar or vector coefficient and the results fed into summing amplifiers to

form the real and imaginary parts of P(zu z2). Treatment of the more general

case is obvious. In the case of polymonials in several variables this machine

calculation becomes very useful for obtaining exploratory information about

the characteristics of such functions.

Polynomial transformations, approximations, zeros : When a polynomial

has been coded on a machine, it becomes possible to obtain information by

either manipulating the coefficient pots or the z pots or both. By using ca-

thode ray screens and function tables one manipulates the coefficients to

determine a transformation to take a contour C in the z plane into a contour

C in a P plane or one finds a polynomial approximation to a given contour

C in a P plane. Again one manipulates the x, y pots and determines a set of

points in the z plane corresponding to a point pin a. P plane, in other words

one solves the equation p = P(z) for a given value of p.

A systematic process for treatment of the latter problem is known in the

literature1'2 and will here be outlined briefly for the sake of completeness.

The brief statement will enable most readers to apply the process without

referring to the literature. We have the theorem that a closed contour C

in the z plane is mapped by a polynomial into a closed contour C enclosing

a given point p if and only if C contains at least one of the points zr satis-

fying the equation p = P(zr). One finds a rectangle C containing a point zr

and then gradually contracts it by systematic trial and error until zr is

located with the required accuracy or within the accuracy of the machine.

Further accuracy may be obtained by the complementary use of a hand digi-

tal machine by such method as found in Milne.3

It must be pointed out again that although the machine coding has been

described in terms of ganged pots the coding may also be done with simple

pots when ganged pots are not available. In fact the example cited below

was worked out with and without ganged pots. With simple (x, y) pots

all of which must be reset for each change in z, the treatment of the problem

is somewhat longer. It was observed that some of the simple x, y pots

dominate the changes in the polynomial and with this experience it did not

take long to drive the polynomial values in the required direction.

Example: The polynomial equation

P(z) = z6 - z4 - 3z3 + z2 + 12z + 5 = 0

was solved on both Reeves and Goodyear Analogue Machines. One root was

located in the rectangle whose vertices were (0, 0), (2, 0), (2, 2i) and

(0, 2i). The rectangle was systematically contracted until the root was

located with an optimum of accuracy. The polynomial was then reflected in

the origin and a pair of roots located in the same rectangle. Since one of

these was clearly a real root it was located with an optimum of accuracy

by an obvious systematic search on the real segment of the rectangle. The

first contraction of this rectangle which left out the axis of reals gave a con-
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tour in the P plane which simply inclosed the origin. It was then a matter of

further contractions to obtain the best estimate of the root. The table below

gives a comparison of the roots as calculated by both analogue and digital

methods.

Analogue Method

Digital Method

.454

.4517

1.94   ± 960i

1.935 ± .9466*

- 1.21   ± .954¿

- 1.216 ± .9595*

Max G. Scherberg
John F. Riordan

Wright-Patterson Air Force Base

Ohio

This paper was written at the Flight Research Laboratory, Wright Air Development
Center, Wright-Patterson Air Force Base, Ohio.
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