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In this paper I have concentrated on functions of one variable, but the

remarks apply with greater force to partial differential equations, particu-

larly in the desirability, both for the sake of accuracy and a minimum of

labour, of using conveniently large intervals.
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Monte Carlo Matrix Inversion and

Recurrent Events

1. Introduction. Recently Wasow1 has given a necessary and sufficient

condition that one of two unbiased estimators of the inverse element of a

given matrix has a smaller variance. Using the theory of recurrent events,

we extend a result by Feller2 in order to generalize and reinterpret Wasow's

condition. To do this let us consider a simple discrete Markov process with

a finite number of states. Of these m + 1 states denoted by 0, 1, 2, • • •, m, we

prescribe that the state named "0" is the only death state or sink—in the

sense that the random walk ends when this state is reached. Let pik be the

one-step transition probabilities for i, k = 1, • • -, m, and let

m

Pío = 1 —  £ pik    for    i = 1, • ■ •, m.
*-i

Further, we assume that each pi0 > 0. When » > 0 define pfi as the proba-

bility that in a random walk starting at state i, state k is visited on the

«-th step; and define pfi = Sik, where Sik is the Kronecker delta.

Now if (qik) = (Sue — pik) is the m by m matrix whose inverse (qik) is

desired, we may estimate each element qik by Monte Carlo methods as in

Wasow2, Forsythe & Leibler3, and Curtiss4, since

qik =  £ Pfl
n-0

Two estimators have been investigated. The first estimator is the sample

mean of the random variable sik where sik = pío1 if the random walk having

started at state i stops just after visiting state k, and s,k = 0 if otherwise.

The second estimator is the sample mean of the random variable Vik where

Vih is the number of visits to state k in a random walk having started at
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state i. Now it is known that both these estimators are unbiased, that is,

(1) E(sik) = qik

and

(2) E(vik) = qik

where E is the expected value operator. Further, the second moments of

these random variables can be expressed directly in terms of the qik and

pko- We have

(3) E(s2it) = PT¿ q*k

and

(4) E(v2it) = (2qkk - l)qik.

Relations (1) and (3) were proved by Forsythe & Leibler3, and relations

(2) and (4) were derived independently by Curtiss4 and by the author.

Now, Wasow1 showed that

(3') E(s\t) = A   ,.X<\   ,    for i * k
pko(l — X**)

and

rti\ cv 2 \        Xi*(l + Xtt) .
(4') E(vit) =    -t _ Xt .2     for * ^ k

where he defined X¿* as "the probability of going from state i to state k

without passing through state k on the way; i.e., X<* is the total probability

associated with all paths connecting state i and state k, all intermediate

points being different from state k." Thus, we have before us two different

interpretations of the second moments of Sik and p« in the case i ¿¿ k.

2. Recurrent Events. Using the concept of recurrent event as developed

by Feller2 we now extend a result of Feller2 to establish a general theorem

which shows the fundamental probabilistic relation between the two inter-

pretations for the moments. When n > 0 define rf¿ as the probability that

in a random walk starting at state i, state k is visited for the first time on the

w-th  step,  and define rf¿ — 0. Let

r« = Z rf¿

so that Tik equals the probability that in a random walk starting at state i

state k is eventually visited.

Theorem:   qik — 5a = rikqkk.

Proof: By considering the mutually exclusive and exhaustive cases it

follows that

Pt¿ = rfi + rST1' P® + ■■■+ r$ PtT1}    for n > 0
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and since rfi = 0 and p("¿ = Sik that

(*) m = ¿ 'ft-" P®    for n > 0.

Next we define

Pik(û) = E pT¿un
n=0

as the probability generating function for the sequence {pTt}, and define

Rik(u) = E *"
n=0

as the probability generating function for the sequence {rfi} ■ Hence by a

basic property of generating functions we have by (*)

Pik(u) — Sik = Rik(u)Pkk(u)    for all u.

Putting m = 1 we get

ZpT¿-8ik = ( 2Zrf¿)( ZP(S).
n=0 \ n=0        /   \ n-0 /

However, this is
qik - Sik = rikqkk

which was to be proved.

As corollaries we get the explicit relations

... qik - Sik

(5) r<« =       çkk

and

(6) qik =

since by definition

and by assumption

q"

1 — rkk

qkk > pw = ! > o

1 — rkk > pk0 > 0.

Thus we have a direct derivation of the general relation between qik and

rik for all i and k.
As a matter of interest, while working with Wasow, the author first

derived relations (5) and (6) indirectly by equating expression (3) to (3'),

and expression (4) to (4')- Thus the relation of qik to \ik was found. Next it

was seen that \ik is, in fact, just r¿*. An informal verification is as follows.

The probability that a random walk initially traverses a given path is

equal to the probability that the walk takes that path times the probability

that the walk thereafter follows some path from the class of possible paths

remaining. But the latter probability is one. Therefore X« may be replaced

by ru.
We may now write the second moments of our two random variables in

terms of rik.

(7) E(sU) =
1     r\ks«

Pk0 1   —  fkk
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and

(8) ¿ft) = \±** r^-
1   — rkk 1   — Tkk

Thus, a comparison of (3) and (4) yields

(9) E(&) < E(v2it)    if and only if   —-.■< 2g** - 1
PkO

and similarly, (7) and (8) give

(10) E(s2it) < E(v2{t)    if and only H   ~ < I + '"•
pJfcO 1   —  fi*

This, of course, is Wasow's result expressed in terms of c« rather than \kk-

Since rkk is usually unknown, but rkk ^ pkk\ (10) implies

(11) E(sl)<E(vl)    if   ^<\±^-
PkO        1  — Pi*

These recurrent events associated with this stochastic process have

permitted the derivation of further results which will be treated in a subse-

quent paper.
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RECENT MATHEMATICAL TABLES

1042[A].—C. E. Fröberg, Hexadecimal Conversion Tables. Lund, 1952, 20
p., 21.7 X 14.6 cm.

These tables are designed to assist in the coding of problems for binary

computers. There are four tables. Table 1 is a table of the integers

1(1)210(24)212 in both decimal and hexadecimal notation. Table 2 gives the

hexadecimal equivalents of w-10-2*, n = 1(1)100, k = 1(1)8, correct to 13
hexadécimals. Table 3 gives the hexadecimal equivalent of 50 frequently used

constants correct to 16 hexadécimals. Finally Table 4 gives the decimal

equivalents of numbers of the form

W-16-*    n = 1(1)15,* = 1(1)13.

Results are given to 16D. The letters A B C D E F are used as hexadecimal

notation for the numbers ten through fifteen. A few examples of the use of

the tables are given in the introduction. This handy booklet should find its

way into many a coding room.
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