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very briefly the computer used. No reference is made to the large amount of

literature on the paper.

As far as computing technique goes the main point of interest is an elec-

tronic circuit used to represent the boundary conductance which is not con-

stant but rather a function of temperature. This nonlinear condition has

heretofore on other computers been represented in discrete finite steps. The

author shows in figure 8 a circuit for representation of such boundary con-

ductance. The check of the computations with actual experiments is rather

unsatisfactory possibly because of poor assumption of physical constants of

the system ; the correction of assumptions determines in analog computers

the validity of the result. The author, in designing the computing circuit,

disregards a number of influences (for example the thermal resistance of the

ice).
Victor Paschkis

Heat and Mass Flow Analyzer Laboratory

School of Engineering

Columbia University, New York, N. Y.

1015. F. Weiner, "Further remarks on intermittent heating for aircraft

ice protection," ASME Trans., v. 73, 1951, p. 1131-1137.

The paper deals with the deicing of a propeller of ovoid cross section.

The butt end of this ovoid will be called A, the extension, B. Heat is gen-

erated by electric heaters only in the region A and is conducted to the

region B. A cross section through the propeller in the region A shows

(proceeding inwards) the steel blade (extending all the way to B), a layer of

nylon, the heater, another layer of nylon, and finally sponge rubber. Dis-

regarding the heat flow along the propeller length, the problem is two di-

mensional.

The greatest problem in solving two dimensional problems on analog

computers, one on which little information is available, is that of how to sec-

tion the body in which heat flow occurs. The authors disregard the thermal

resistance across the thickness of the steel, and along the length of the nylon

and heater layers. The sponge rubber is represented by a number of parallel

sections, ending in a fictitious center with zero volume (Fig. 3 of the paper).

This design is not discussed or analyzed; thus, the most crucial problem,

from a computational view-point, is not dealt with in the paper. Regarding

deicing, the paper shows the desirability of using high rates of energy produc-

tion, which results in a lower total heat consumption than heating at a lower

rate.

Victor Paschkis
Heat and Mass Flow Analyzer Laboratory

School of Engineering

Columbia University, New York, N. Y.

NOTES

143.—Analytical Approximations. [Editorial Note: In Note 139,
MTAC, v. 6, p. 251-253, Cecil Hastings has described the Rand Collection
of Illustrative Approximations. The interest that these approximations have

aroused during the past year is considerable. It is hoped to publish as Notes
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from time to time additional examples of such approximations contributed

by our readers. To encourage this hope, Mr. Hastings is submitting a dozen

new examples, prepared with the assistance of Mr. James P. Wong and Mrs.

David K. Hayward. These differ from the Rand Collection in form, es-

pecially since they do not give illustrative error curves. For convenience in

future references we are numbering these approximations consecutively.]]

(1) Square Root: To better than 1 part in 12 over .1 < * < 10,

x* = (1 + 4x)/(4 + *).
(2) Pearson Cosine Transformation: To .003 over 0 < x < 1,

r(x) = cos (tt/(1 + x*)) = (- 1 - 4x + 5x2)/(l + 8x + 6x2).
r(x_1) = — r(x) can be used to obtain function values over 1 < x
< »•

(3) Common Logarithmic Function: To better than .005 over .1 < x

< 1, log x = - .076 + .281 x - .238/(x + .15).
This approximation is the result of a request for a very simple

formula to use in the reduction of certain data.

(4) Common Logarithmic Function: To better than  .000,004 over

1 < x < 10,

logx = \ + .86857y + .29059/ + .15783/ + .20269/,
where y = (x - Vi0)/(x + VTÖ).

(5) Common Logarithmic Function: To better than .000,000,015 over

1 < x < 10,

logx = \ + .8685888y + .2895497/ + .1731159/ + .1314381/
+ .0547562/ + .1832415/1,
where y = (x - Vl0)/(x + VlO).

(6) Inverse Tangent : To better than .005 over — 1 < x < 1,

arctan x — x/(l + .28x2).

This approximation is the result of a request for a very simple for-

mula to use in the reduction of certain data.

(7) Descending  Exponential  Function: To better than  .000,000,11

over 0 < x < »,

e~x = (1 + aix + o2x2 + 03X3 + Û4X4 + a6x6)-8,

where   01 = .125,000,204,   a2 = .007,811,604,   a3 = .000,326,627,
a4 = .000,009,652 and a¡ = .000,000,351.

(8) Incomplete  Gamma  Function  Type   Integral :  To  better  than

.000,000,1 over 0 < x < 1,

F{x) = j° e-'t

= [.219384+x(.024717 + .000803x)]/[l+x(.558651+.090584x)].
F(x) + (x -f- i)F(x + 1) = e_1  can   be   used   to  obtain  function

values outside the range indicated.

(9) Exponential   Integral   of   Negative  Argument:  To  better  than

.000,000,1 over 10 < x < »,
/•ce

xex I    t^e-'dt

= [1.15198 + x(4.03640 + x)]/[4.19160 + x(5.03637 + x)].
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(10) Segmental Area Function : To better than .0012 over — 1 < x < 1,

A(x) =  I* (1 - ñ*dt = 2.0083* - .4160*' + .1604x5 - .1808*7.

In terms of elementary functions, A(x) = arcsin x + x(l — x2)*.

(11) Segmental Area Function : To better than .00016 over — 1 < x < 1,

A(x) =   f "(1 -t2)*dt

= (1.99916* - 2.39484x3 + .58673x6)/(l - 1.03472*2 + .15634a;4).

(12) Segmental Area Function : To better than .000,016 over — 1 <x< 1,

A(x) =   V (1 -t2)*dt

= x(1.999872 + 4.143151», - 3.153670t;2 - 1.430807t,3)/
(1 + 2.901498t, - 1.811287t,2 - 1.098016t,8),

where t, = xi/(5 — 4x2).

Cecil Hastings, Jr.

RAND Corporation

1700 Main Street

Santa Monica, California

144.—Zeros of the Derivative of Bessel Functions of Fractional

Order. The NBS Computation Laboratory1 has published extensive tables

of Bessel functions of fractional order, J,(x), db v ™ f, f, f, \, and zeros of

Jy(x) have been tabulated by Abramowitz2 and by the Computation Labora-

tory when the latter was known as the Mathematical Tables Project.3 (The

zeros in the last two sources are also given in the first, p. 384-385.) This

present note gives the first seven or eight positive zeros of the first derivative

of those Bessel functions. Following standard notation, jPi„ will be used to

denote the s-th positive root of JJ(x) — 0. The zeros jv¡a were obtained from

the published values1 of J\(x), and this table includes all such zeros within

the range of tabulation of Jy(x) itself (i.e., not exceeding 25).

These zeros were computed to the maximum accuracy obtainable from

the NBS tables. All entries are given here to seven decimal places ; although

the seventh decimal place is not absolutely guaranteed, it has a high prob-

ability of being correct. The zeros were computed using the 5-point case of

two different formulas for inverse interpolation for the derivative, given in

Salzer4 on p. 214 and p. 215. They were also checked by (a) calculating an

approximate expression for the error in jFp,, (b) recomputing the last

j'r¡, given here by the asymptotic formulas for each v (see below), and (c)

computing the seventh divided difference of j,t, as a function of v, using a

formula in Salzer.6 (This divided difference check was not fully applicable to

the first few zeros.)

For zeros > 25, the following asymptotic formulas, whose coefficients

were calculated from the general expression îor j,,, in Watson,6 will give at
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least seven decimal accuracy :

± " = i   At - y— •65625000y-1 - .54931641?-'

where y = ts Í 311-1
39269908 v = - f

7809724 p = i

± " = f. Ä. - y - .59722222?-' - .41380530?-'

where y -«.-{.j .26179939 r - - }
.30899694 v = |

± " = ï.   J..> y - .43055556?-' - .07507073y-3
.26179939     v = - \
.83259571)    * = \

where y = its + {(-J
± " = i.   £•-'?■- .40625000?-' - .03108724?-'

f .39269908     v = - i
l(-l.í

where ? = irs +
.96349540)    v = |

To obtain j'Vt, for any other v that is less than one in absolute value, the

present table may be used in conjunction with a special table of interpolation

coefficients,' p. 393-413. The user is cautioned that for interpolation as well

as for forming divided differences, the values of j„,s for v < 0 are not contin-

ued intoX, for v > 0, but into j,,.+i-
Mrs. Ruth E. Capuano and Miss Mary M. Dunlap assisted in the

computations.
Herbert E. Salzer

NBSCL

Table of^,,

s

1
2
3
4
S
6
7
8

1
2
3
4
5
6
7
8

v= -I

2.47861 49
5.77630 68
8.95866 64

12.11945 77
15.27226 12
18.42121 33
21.56801 08
24.71348 00

v = \

1.51433 70
4.97223 54
8.16610 90

11.33027 35
14.48452 05
17.63422 27
20.78145 96
23.92720 84

"= -f
2.65267 49
5.92026 00
9.09725 75

12.25581 13
15.40738 64
18.55556 21
21.70182 42
24.84690 21

1.40121 80
4.85063 49
8.04140 90

11.20403 00
14.35735 04
17.50643 40
20.65322 86
23.79864 53

3.27468 22
6.47892 00
9.64204 42

12.79457 06
15.94278 34
19.08881 57
22.23359 29

0.90999 85
4.35291 38
7.53529 41

10.69360 09
13.84430 89
16.99164 33
20.13718 52
23.28166 09

3.41838 81
6.61491 38
9.77606 19

12.92770 62
16.07542 28
19.22113 82
22.36569 56

0.76906 15
4.22515 79
7.40675 25

10.56453 27
13.71489 82
16.86199 56
20.00736 48
23.15170 93

1
2
3
4
5
6
7
8

1
2
3
4
5
6
7
8
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145.—An Example in the Use of the Differential Analyser. In a
recent article Sprague1 has discussed, as an example, a differential an-

alyser setup for solving the equation

w ww' — wt = 0,

dt

dt

yf«-

<w>
d(t*)

Figure 1

primes denoting differentiation with respect to t. There are several simpler

ways of setting up this equation. One is to take the once-integrated form

" " /.'
wd(w + \t2) + w'(0)

and so place it on the analyser in accordance with Figure 1. This uses three

integrators in lieu of the six shown in Figure 3 of Sprague's paper.

National Physical Laboratory

Teddington, Middlesex
England

J. G. L. Michel



72 CORRIGENDA

[Editorial note : Mr. Sprague informs us that an additional integrator
will be required in case the differential analyzer is of digital type, thus the

above method would require four integrators.]

1 R. E. Sprague, "Fundamental concepts of the digital differential analyzer method of
computation," MTAC, v. 6, p. 41-49.

146.—Two New Mersenne Primes. The program described in Notes
131(c) and 138 \_MTAC, v. 6, p. 61, 204 J has been continued. Two more
Mersenne primes, 22203 — 1 and 22281 — 1, were discovered by the SWAC on

October 7 and 9, 1952. The time required for either of the tests is one hour.

This makes 17 Mersenne primes, and a corresponding number of perfect

numbers, now known. They are 2" — 1 for» = 2,3,5, 7,13,17,19,31,61, 89,
107, 127, 521, 607, 1279, 2203, and 2281.

D. H. L.

CORRIGENDA

v. 6, p. 129, 1. 22 for n(\ - pj_i) read n(\ + p<+i)
v. 6, p. 132,1. — 6 and — 18/or Thompson read Thomson

v. 6, p. 152,1. -5 for 8 read 9
v. 6, p. 187,1. 12 for QVAC read QUAC
v. 6, p. 189,1. — 8 for Connoly read Connolly


