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This amounts to correcting n2 by the term

e3M2

«3

Obviously if l2 had been corrected instead of n2 the correction would be

€3M2

To make the correction small, the largest of l3, m3, n3 is made to appear in

the denominator. This also prevents division by zero, which might occur if

«2 were corrected under all circumstances.

After the direction of r2 has been established perpendicular to r3, its

magnitude must be adjusted. The procedure is to alter all components pro-

portionately as for r3 above. Clearly this does not destroy orthogonality.

h, í»i, Wi can now be computed from equation (3)

m2n3 — m3n2

6. Conclusions. The equations of motion of a rotating rigid body can be

formulated directly in terms of the direction cosines. The direction cosines

can be determined as described above in a manner which is thought to be

ideally suited to digital computation. No trigonometric functions of the

Eulerian angles appear, obviating the necessity of referring to a function

table or to a series expansion to obtain the solutions of the equations of

motion. In addition, all quantities are finite for all orientations of the

rigid body.
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A Solution of Simultaneous Linear Equations
and Matrix Inversion with High Speed

Computing Devices

In solving several systems of simultaneous linear equations, in which

the coefficients of the unknowns are the same in all the systems but in
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which the constant terms vary from system to system, it is advantageous

to invert the matrix formed by the coefficients of the unknowns. This in-

verted matrix, common to all the systems, is then multiplied by the vector

formed by each set of constant terms, and a set of solutions is thus obtained

for each of the above systems,1 or simultaneous solutions of the systems ob-

tained at the time of inversion. The inversion of a matrix, especially if it is

of a high order, is a laborious and time-consuming process. From time to

time new methods of inversion have been developed and modified to suit

the computation equipment available until it seems that a saturation point

in simplicity of application, accuracy of results, and speed of computation

has been reached, and further improvements will have to come from the

development of the computing machines themselves or from their applica-

tion. For information on these topics the reader is referred to items 2-12 of

the bibliography.
The following is a modification of an algebraic treatment of the matrix

by the direct method which will reduce the labor and time necessary for

inversion. This method has time and labor saving characteristics applicable

to computations with low and high memory computing devices, making

the inversion of high order matrices less forbidding.

In addition to the customary definitions of inversion, pivotal row, lead-

ing element, etc., which are here taken for granted, we will define prepivotal

and transpivotal rows as the rows respectively preceding and following the

pivotal row. Consider also the original matrix as extended to the right by

means of the identity matrix and a check column (other augmentations of

the original matrix may be included to suit the needed results6 and a check

row may be added for ease in locating the source of spurious results).

In a simplified method" of inversion the elements of this extended matrix

are operated upon by certain reduction operations and an intermediate

matrix is obtained, the elements of which, on a second application of the

reduction formulas, yield another intermediate matrix, and so on until,

after the «th reduction, the inverted matrix is obtained. The reduction

operations usually consist of a quotient operation applied to the elements of

the pivotal row and a binomial operation applied to the elements of the

other rows. This reduction cycle has a definite advantage in its simplicity,

but it involves computations with the elements of the transpivotal rows in

all the previous reductions, in preparation of values for the time when these

transpivotal rows become pivotal or prepivotal. Also, with automatic com-

puting machines, all the elements of the identity matrix are involved in

the calculations even at the time when some of them do not contribute to

the final result.
The method proposed in this article computes partial reductions (on

some of the rows only) on pivotal, prepivotal, and the first transpivotal rows,

until the memory capacity of the computing equipment is reached, at which

point a complete reduction (on all the rows of the matrix) is computed,

repeating this cycle, with the last obtained matrix, until final reduction

(inversion) is reached; all this while, at a given time only the relevant con-

tributing part of the identity matrix is used. It is to be noted that the saving

in the identity matrix is independent of the transpivotal row economy and

may be used with other inversion methods as well.
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Three types of computing operations are used in each matrix reduction.

1. Divisional or quotient operation, used on the elements of the pivotal

row.

2. Binomial operation, used on the elements of the prepivotal rows.

3. Polynomial operation, used on the elements of the first transpivotal

row for partial matrix reductions, and on all the transpivotal rows

for complete matrix reductions.

Let the elements of the original extended matrix be xa (where i and j

respectively represent the row and column of the particular element, * may

assume values from 1 to n, and j values from 1 to 2« + 1). Let the elements

of the matrix developed after the first, second . . . and «th reductions be

an, bij ■ ■ ■ »y, respectively. As usual the tth row is pivotal for the ith reduc-

tion. The formulas for the first five reductions are:

(j = 2(1)« + 1)

(j = 3(1)« + 2)

x3ibij

(j = 4(1)« + 3)

Xi2C2j — XiiCij

(j = 5(1)« + 4)

#63^3/  —  Xi2d2j  —  Xf,ldl,

(j = 6(1)« + 5)

Xneij — X(,3e3j — x$2e2j — XeiCi;

The check column should be included in the above values of j.

Thus, on the first reduction, the pivotal row is the first row, the elements

of which are divided and the binomial operation is applied to the elements of

the second row. On the second reduction, the second, first, and third rows

are pivotal, prepivotal, and the first transpivotal, respectively. In the third

reduction, the third row is pivotal, the first and the second rows are pre-

pivotal, and the fourth row is the first transpivotal, etc.

(1)

(3)

aU = Xij/Xu

a2¡ = x2j — x2iai3-

bij = an — ai2b2¡

(2)    b2j = a2j/a22

b3j = x3j — x32b2j —

Cij = bij — bi3c3j

c2j = b2j — b23c3j

cv = b3j/b33

Cij = Xij — Xl3C3j —

dij = Cij — Cudij

d2¡ = c2j — c2idij

(4)    d3j = c3j — Cudtj

dij = Cij/cu

dij = x$j — Xtidij —

ßij = dij — due5j

e2j = d2j — d^e^j

e3j = d3j — d3f,ei¡

Bij  —  dij  —  ¿46^5;

e6j = d6j/d66

ttj = Xej — xttesj —

(5)
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With an unlimited, or sufficiently large, memory machine the process is

continued until the wth reduction, when the nth row is pivotal, the rows less

than n are prepivotal and there are no transpivotal rows. In applying the

above formulas to the elements of the original (extended) and intermediate

matrices, only columns of the identity matrix up to and including the unit

element of the corresponding pivotal row need be included.

With limited memory machines the process is continued until the memory

capacity is reached, at which point the quotient operation is applied to the

elements of the pivotal row, the binomial operation is used on the elements

of the prepivotal rows and the polynomial operation is computed for the

elements of all the transpivotal rows. Thus, if in the above equations the

fourth reduction had been complete, the general equation for the transpivotal

row elements would have been :

du = xa — Xadij — Xi3d3j — Xiidij — Xndi¡        {i = 5(1)«)

With a minimum memory machine all the reductions are computed as

usual with a quotient operation on the elements of the pivotal row and a

binomial operation on the elements of all the other rows. Unlimited, limited,

and minimum memory machines are left undefined except in their use to

classify the three broad applications of the method as described above.

The polynomial expression for the transpivotal rows, which is easily

obtained algebraically from previous binomial reductions by a rearrange-

ment of terms and by a substitution of pivotal and prepivotal results of the

same column, permits partial reductions of the matrix due to the fact that

it depends only on the pivotal and prepivotal results of the same column

and on the leading elements of the original extended matrix for the corre-

sponding row.
It is to be noticed that in the above formulas we must distinguish be-

tween two types of leading elements : (a) derived leading elements for pivotal

and prepivotal rows and taken from the previous matrix reduction, and (b)

original leading elements for transpivotal rows and taken from the original

extended matrix (or from an intermediate matrix obtained in a previous

complete reduction). For a given transpivotal row, there are as many

original leading elements as the number of the reduction. Varying degrees

of continuity within the cycle itself may be obtained according to the

storing capacity, programming facilities, available means for selection of

properly coded rows and columns, and other characteristics of the available

equipment.
Between the two extremes of no memory and unlimited memory there

is an optimum program design which is approached by a judicious choice

of continuity of operation using the above minimum memory requirements

to meet the available memory capacity.

We have successfully and economically applied the above method to the

inversion of 20 by 20 matrices using a full capacity 602-A.IBM calculating

punch while using words of 12 digits throughout in order to take care of

creeping decimal errors from the right and overflowing on the left. Three

partial and one complete reductions per cycle were obtained.

With reduced numbers, when possible, greater savings may be achieved,

but they are not advisable when handling high order matrices. Even when
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large integral values may be avoided by preliminary or intermediate treat-

ment of the matrix, the creeping decimal error is ever present and may be

met only with otherwise unnecessary decimals or with iterative methods.3

The time consumed by this method and the time by the method of all

complete reductions were in the ratio of 1 to 3 when using the same equip-

ment in both cases and with the same number handicap, by the same

operators.
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Error Bounds on Approximate Solutions
to Systems of Linear Algebraic Equations

1. The Abmatrix. Consider the real matrix A = (ai;), i = l(l)m, j =

1(1)«. Define a(A), read "the abmatrix of A," to be

a(A) = (\aij\).

Thus, a(A) is the matrix having each element equal to the absolute value

of the corresponding element of A. In particular, for a scalar 5,

a(s) = \s\.

If A = (an) and B = (bij), i = l(l)m, j = 1(1)«, define

a(A) ^ a(B)

to mean

I aa I ̂  I bij |        for all i, j.

Thus, if a(A) ^ a(B) and a(B) ^ a(C), then a(A) ^ a(C).


