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synchronously with the / graph which records the x motion of the plate. The

operator moves the plate so that the y = f(x) and x = <p(y) graphs have

the same ordinate y on the above-mentioned line and hence the desired out-

put v(f(x)) is obtained from the recorder. The article contains details of the

construction and of the application mentioned in the title.

F. J. M.

NOTES

147.—Stability of Difference Relations in the Solution of Ordi-
nary Differential Equations. In a recent communication, J. Todd1
demonstrated the danger of replacing a differential equation, for computa-

tional purposes, by a difference equation of higher order. H. Rutishauser2

has since given some general criteria for determining the stability of differ-

ence approximations to ordinary differential equations. In the present note,

some standard step-by-step methods of integrating ordinary linear differ-

ential equations are examined for stability.
Let a linear differential equation be replaced by a finite difference ap-

proximation of order p (i.e., one involving p + 1 tabular values). Then the

wth tabular entry is calculated from

(1) y» + 4iy„_i + ^42y«-2 + • • • + Apyn-P = 0,

where Ai, A2, • • • ,AP are functions of x and of the interval length h. Now

suppose the errors existing in the entries yn-P, y»-j>+i, "•> yn-i are €„_p,

€„_j,+i, • • •, en_i respectively, then the consequent error in y„ is e„ where

(2) 6„ + -4ie„_l + A2Cn-2 +   • • •   + Aptn-p   =   0.

Consider also for convenience that the above errors result entirely from

errors in the initial values yi, y2, • • •, yp. Then the general error given by

equation (2) is

e„ = fliXi" + 02X2" + • • • + ap\p",        (n> p),

where ai, a2, ■ ■ ■, a„ are constants and Xi, X2, • • •, Xn are the roots of the

auxiliary equation

(3) \> + AiX*-1 + A2\p~2 + •■• + Ap = 0.

The condition for stability is that all the roots of equation (3) lie inside

or on the unit circle.

Todd1 considered the differential equation

y" = - y,

and its fourth order central difference replacement

yn - 16yn_! + (30 - 12Ä2)y„_2 - 16y»_3 + y»-4 = 0.

As h approaches zero, the roots of the corresponding auxiliary equation

tend to 1, 1, 7 — V48, and 7 + VÏ8, the last root quoted being responsible
for the instability found by Todd. The fourth order backward difference
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formula, however, is

(35 + 12h2)yn - 104yn_! + 114yn_2 - 56yn_3 + lly_4 = 0,

with auxiliary equation roots tending to 1, 1, Vll/35, and Vll/35 as h

approaches zero. This formula is thus stable at least for sufficiently small h.

In general, because of the smaller coefficients employed in calculating yn

from a backward difference formula, the chance of multiplying an error will

be correspondingly less. Thus in any step-by-step method, stability is more

likely to result from using backward than central differences.

The use of backward difference formulae, however, does not ensure sta-

bility, for consider the equation

(4) y' - - y,

where y is to be computed for increasing x. Write

(5) hy0' - Vy0 + V2y0/2 + V3y0/3 + • • • + V»y0/w,

leading to the auxiliary equation,

(6) k + (1 - 1/X) + (1 - l/X)»/2 + (1 - l/X)3/3 + • • •

+ (1 - 1/X)»/» = 0.

It can be shown that for h = 0 the roots of equation (6) other than X = 1

have modulus less than unity for n — 6. For n = 7, there is a pair of con-

jugate complex roots approximately equal to ± i. For n S 8 there will be

at least one pair of conjugate roots of modulus greater than unity. (The

greatest pair is found easily by Graeffe's root-squaring method.) Table I

demonstrates the instability of the twelfth order backward difference

formula applied to equation (4). The values of e~x at decimal intervals from

0 to 1.1 required to start the computations, were taken from five figure

tables. The theoretical and computed values from 1.2 to 2 are given in rows

(1) and (2) respectively in table I.

Table I

x       1.2        1.3        1.4        1.5        1.6        1.7        1.8        1.9 2

(1) .30199   .27253   .24660   .22313   .20190   .18268   .16530   .14957   .13534
(2) .30148   .27341   .24708   .22244   .20337   .18665   .16017   .14168   .16065

Next consider the stability of the integration formulae due to Adams

and Moulton. Adams' method is based on the formula

(7) (yi - yo)/h = yo' + l/2Vy„' + 5/12VV + 3/8VV

+ 251/720VV + • • •

where a sufficient number of starting values for y, y' is supposed computed

by an independent method (e.g., by Taylor series). Consider again the first

order equation (4). Adams' formula leads to the auxiliary equation

(8) F(X) - X - 1 + A{1 + 1/2(1 - 1/X) + 5/12(1 - 1/X)2

+ 3/8(1 - 1/X)3 + 251/720(1 - 1/X)4} = 0,
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where only fourth differences are retained and it is clear that there is

stability as h tends to zero. Now from equation (8), F(— <») < 0, and

F(— 1) = — 2 + 551A/45. There is therefore a root of modulus greater

than unity when h exceeds 90/551, and the method is stable only for suffi-

ciently small tabular interval. Moreover if higher order differences are re-

tained, the maximum value of h for which the method is stable is decreased.

Similar arguments show that Moulton's method based on the formula

(9)    (y0 - y-i)A = yo' - l/2vy0' - 1/12VV - 1/24VV

- 19/720VV

is also unstable for large values of the tabular interval when differences

higher than the first are retained. The upper limit on h for stability for a

given number of differences is very much higher than in Adams' method.

It has been remarked by Rutishauser2 that the error equation, corre-

sponding to a non-linear differential equation of the form

y<»> = /(*,y,y<», •••,y("-1>),

is linear. The above arguments with certain modifications can therefore be

applied to the stability associated with equations of this form.
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148.—Two Non-elementary Definite Integrals. The two integrals

in question are
J"x f*x

t'dt,       G(x) =   I   r'dt
o Jo

and are of interest because of the peculiar branching properties of the inte-

grands and because they lead to series with unusually rapid convergence.

Integrals of these types have been encountered in some recent studies of

transients in networks. They can be evaluated numerically as follows.

As usual, we interpret t' as

CO

giiogt = £ (t log/)"/»!
n-0

The integral of the general term of this series

/„ = -  (   (t log t)ndt
n.j0

can be expressed in terms of the complete and incomplete Gamma function

by means of the transformation

u = — (n -J- 1) log t.




