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synchronously with the / graph which records the x motion of the plate. The

operator moves the plate so that the y = f(x) and x = <p(y) graphs have

the same ordinate y on the above-mentioned line and hence the desired out-

put v(f(x)) is obtained from the recorder. The article contains details of the

construction and of the application mentioned in the title.

F. J. M.

NOTES

147.—Stability of Difference Relations in the Solution of Ordi-
nary Differential Equations. In a recent communication, J. Todd1
demonstrated the danger of replacing a differential equation, for computa-

tional purposes, by a difference equation of higher order. H. Rutishauser2

has since given some general criteria for determining the stability of differ-

ence approximations to ordinary differential equations. In the present note,

some standard step-by-step methods of integrating ordinary linear differ-

ential equations are examined for stability.
Let a linear differential equation be replaced by a finite difference ap-

proximation of order p (i.e., one involving p + 1 tabular values). Then the

wth tabular entry is calculated from

(1) y» + 4iy„_i + ^42y«-2 + • • • + Apyn-P = 0,

where Ai, A2, • • • ,AP are functions of x and of the interval length h. Now

suppose the errors existing in the entries yn-P, y»-j>+i, "•> yn-i are €„_p,

€„_j,+i, • • •, en_i respectively, then the consequent error in y„ is e„ where

(2) 6„ + -4ie„_l + A2Cn-2 +   • • •   + Aptn-p   =   0.

Consider also for convenience that the above errors result entirely from

errors in the initial values yi, y2, • • •, yp. Then the general error given by

equation (2) is

e„ = fliXi" + 02X2" + • • • + ap\p",        (n> p),

where ai, a2, ■ ■ ■, a„ are constants and Xi, X2, • • •, Xn are the roots of the

auxiliary equation

(3) \> + AiX*-1 + A2\p~2 + •■• + Ap = 0.

The condition for stability is that all the roots of equation (3) lie inside

or on the unit circle.

Todd1 considered the differential equation

y" = - y,

and its fourth order central difference replacement

yn - 16yn_! + (30 - 12Ä2)y„_2 - 16y»_3 + y»-4 = 0.

As h approaches zero, the roots of the corresponding auxiliary equation

tend to 1, 1, 7 — V48, and 7 + VÏ8, the last root quoted being responsible
for the instability found by Todd. The fourth order backward difference
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formula, however, is

(35 + 12h2)yn - 104yn_! + 114yn_2 - 56yn_3 + lly_4 = 0,

with auxiliary equation roots tending to 1, 1, Vll/35, and Vll/35 as h

approaches zero. This formula is thus stable at least for sufficiently small h.

In general, because of the smaller coefficients employed in calculating yn

from a backward difference formula, the chance of multiplying an error will

be correspondingly less. Thus in any step-by-step method, stability is more

likely to result from using backward than central differences.

The use of backward difference formulae, however, does not ensure sta-

bility, for consider the equation

(4) y' - - y,

where y is to be computed for increasing x. Write

(5) hy0' - Vy0 + V2y0/2 + V3y0/3 + • • • + V»y0/w,

leading to the auxiliary equation,

(6) k + (1 - 1/X) + (1 - l/X)»/2 + (1 - l/X)3/3 + • • •

+ (1 - 1/X)»/» = 0.

It can be shown that for h = 0 the roots of equation (6) other than X = 1

have modulus less than unity for n — 6. For n = 7, there is a pair of con-

jugate complex roots approximately equal to ± i. For n S 8 there will be

at least one pair of conjugate roots of modulus greater than unity. (The

greatest pair is found easily by Graeffe's root-squaring method.) Table I

demonstrates the instability of the twelfth order backward difference

formula applied to equation (4). The values of e~x at decimal intervals from

0 to 1.1 required to start the computations, were taken from five figure

tables. The theoretical and computed values from 1.2 to 2 are given in rows

(1) and (2) respectively in table I.

Table I

x       1.2        1.3        1.4        1.5        1.6        1.7        1.8        1.9 2

(1) .30199   .27253   .24660   .22313   .20190   .18268   .16530   .14957   .13534
(2) .30148   .27341   .24708   .22244   .20337   .18665   .16017   .14168   .16065

Next consider the stability of the integration formulae due to Adams

and Moulton. Adams' method is based on the formula

(7) (yi - yo)/h = yo' + l/2Vy„' + 5/12VV + 3/8VV

+ 251/720VV + • • •

where a sufficient number of starting values for y, y' is supposed computed

by an independent method (e.g., by Taylor series). Consider again the first

order equation (4). Adams' formula leads to the auxiliary equation

(8) F(X) - X - 1 + A{1 + 1/2(1 - 1/X) + 5/12(1 - 1/X)2

+ 3/8(1 - 1/X)3 + 251/720(1 - 1/X)4} = 0,
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where only fourth differences are retained and it is clear that there is

stability as h tends to zero. Now from equation (8), F(— <») < 0, and

F(— 1) = — 2 + 551A/45. There is therefore a root of modulus greater

than unity when h exceeds 90/551, and the method is stable only for suffi-

ciently small tabular interval. Moreover if higher order differences are re-

tained, the maximum value of h for which the method is stable is decreased.

Similar arguments show that Moulton's method based on the formula

(9)    (y0 - y-i)A = yo' - l/2vy0' - 1/12VV - 1/24VV

- 19/720VV

is also unstable for large values of the tabular interval when differences

higher than the first are retained. The upper limit on h for stability for a

given number of differences is very much higher than in Adams' method.

It has been remarked by Rutishauser2 that the error equation, corre-

sponding to a non-linear differential equation of the form

y<»> = /(*,y,y<», •••,y("-1>),

is linear. The above arguments with certain modifications can therefore be

applied to the stability associated with equations of this form.
A. R. Mitchell

J. W. Craggs
Department of Mathematics

St. Andrews University

Scotland

'J. Todd, "Solution of differential equations by recurrence relations," MTAC, v. 4,
1950, p. 39-44.

2 H. Rutishauser, "Über die Instabilität von Methoden zur Integration gewöhnlicher
Differentialgleichungen," Zeit, angew. Math. Phys., v. 3, 1952, p. 65-74.

148.—Two Non-elementary Definite Integrals. The two integrals

in question are
J"x f*x

t'dt,       G(x) =   I   r'dt
o Jo

and are of interest because of the peculiar branching properties of the inte-

grands and because they lead to series with unusually rapid convergence.

Integrals of these types have been encountered in some recent studies of

transients in networks. They can be evaluated numerically as follows.

As usual, we interpret t' as

CO

giiogt = £ (t log/)"/»!
n-0

The integral of the general term of this series

/„ = -  (   (t log t)ndt
n.j0

can be expressed in terms of the complete and incomplete Gamma function

by means of the transformation

u = — (n -J- 1) log t.
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In fact

(-!).(„+ D-/. -1-S£±£

where

iy« + 1) =   I    e~uundu
Jo

and
y = — (w -f- 1) log ac.

However, since available tables1 of the incomplete Gamma function are not

convenient for this application, it was decided to use a direct evaluation of

the series.

The integral for In can be expressed as a sum of n + 1 terms as follows :2

U      X     Tto(n + l)H-i(» - r)\

Summing over n and collecting the coefficient of each power of log x we

obtain the double series

F(x) = Z In = £ (logx)r/V! £ (- l)'+V+r(i + r)-.
n=0 r—0 8=1

Similarly

G(*) = £ (- l)"/n = Z (- l)r(log*)'A! £ x'+'(s + r)-.
n—0 r=0 «=1

When a; = 1 we have the unusually rapidly converging series

jF(1) = 1 - 2-2 + 3-3 - 4~4 + • • -,

G(l) = 1 + 2-2 + 3-3 + 4-4 +

The following values of F(x) and G(x) were computed to 10D by the above

double series and checked by numerical integration using tables of fractional

powers.3 Values have been rounded off to 8D. Most of the calculation was

made by Mrs. Joan M. Clay.

x F(x) G(x)

0 0.0000 0000 0.0000 0000
.1 0.0870 9546 0.1152 6443
.2 0.1625 6731 0.2478 5617
.3 0.2334 0100 0.3890 5018
.4 0.3027 3442 0.5332 8125
.5 0.37261486 0.6763 8768

.6 0.4446 5226 0.8152 2316

.7 0.5202 8866 0.9474 7031

.8 0.6009 4326 1.0715 0820

.9 0.6881 0902 1.1862 9918
1.0 0.7834 3051 1.2912 8600

M. S. Corrington
Radio Corporation of America

Camden, N. J.
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1 Karl Pearson, Tables of the Incomplete Y-Function. London, H. M. Stationery Office.
(Reissue 1934; London, Biometrika Office, University College.)

2 W. Gröbner & N. Hofreiter, Integraltafel. Erster Teil, Unbestimmte Integrale.
Vienna, 1949, p. Ill, formula 2a.

3 NBSMTP, Tables of Fractional Powers. New York, Columbia University Press, 1946.

149.—The Canon Doctrinae Triangvlorvm (1551) of Rheticus
(1514-1576). Some facts with reference to this excessively rare publication

have been given in material about Pitiscus and Rheticus in MTAC, v. 3,
p. 394, 396, 553-554, 559-560. It is here noted that the only copies known to
have been preserved were in the Bibliothèque Nationale and British Mu-

seum. DeMorgan had a copy in 1845 when he published1 a description of

the work, but this was doubtless in his Library at the University of London,

destroyed during the recent World War.

In Catalogue 19, 1952, of the London bookseller E. Weil, a copy was
offered for 27 £ 10 s. Mr. William D. Morgan, of 1764 St. Anthony Ave.,
St. Paul 4, Minnesota, was so fortunate as to secure this item for adding

to his already valuable collection (see MTAC, v. 3, p. 562-563). Since Mr.
Morgan graciously loaned this precious work to me that a microfilm copy

might be made for the Brown University Library, I take the opportunity

to add a little to the information already published in MTAC. The com-

plete title is as follows: Canon Doctrinae Triangvlorvm. Nvnc primvm a

Georgio Ioachimo Rhetico, in Ivcem editvs, cvm privilegio imperiali, Ne qvis haec

intra decennivm, quacunque; forma ac compositione, edere, neve sibi vendicere

aut operibvs suis inserere ausit. Lipsiae ex officina Wolphgangi Gvnteri. Anno

M.D. LI. In the title page is an obelisk with a man drawing a diagram on

the base.
The back of the title page is blank; then follows a page of Latin verses.

On the back of this page is the first of 14 pages of 7D tables of the six trigo-

nometric functions, at interval 10', arranged for the first time in semi-

quadrantal display. The degrees are in black, and the minutes and differences

are in red. This is the first table in which all trigonometric functions are

brought together. Rheticus was the first to define trigonometric functions

by means of a right-angled triangle without any reference to a circle.

Immediately following the tables are 6 pages of dialogue between

Philomathes, a supposed friend of Rheticus, and Hospes, his pupil. The pupil

asks what the intention of the book is, and is answered at length. He suggests

that, perhaps, the intention may be to complete the system of Copernicus,

by publishing tables from it resembling those then in use. But he is answered

that Rheticus would rather that Copernicus himself had not done so much

in this line, as he thereby diminished the geometrical practice of the learner,

and so on.

An undated 1580 reprint of the Canon is in the British Museum.

The copy of the Canon before me has evidently had its pages trimmed;

but the present size of its pages is 15.8 X 22.5 cm.

R. C. Archibald

Brown University

Providence, R. I.

1 DeMorgan, "On the almost total disappearance of the earliest trigonometrical canon,"
RAS, Mo. Not., v. 6, 1845, p. 221-228; reprinted with an addition in Phil. Mag., s. 3, v. 26,
1845, p. 517-526.
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150.—Square Root on the 602A. The square root setup in the IBM

602A manual [8th ed., p. 81-84] extracts six digit roots of eight digit base

numbers at the rate of approximately two roots per minute, using the

Newton-Raphson scheme with a fixed (six) number of iterations, with

starting values of 3, 30, 300, or 3000, depending on the size of the base num-

ber. The 602A must be equipped with division circuits.

About 75 percent of the 602A's in use do not have division circuits.

Square roots can be calculated by many iterative schemes, however, of

which one of the simplest to program is

(1) xi+i = Xi + i(A - Xi2)

where N is the number whose square root is required, and is taken such that

0 < N < 1. The starting value, x0, is taken as N. The iterations are ter-

minated when

(2) \xi+i — Xi\ < e

where e is a predetermined small number (say 5 in the 4th decimal place).

The error is then less than or equal to eN~\

The rate of convergence is given by the following inequality where

A* — Xk is the error after the &th iteration :

| A* - xk\ < (Ni - N)(l + N - A»)*.

One notices that convergence is slow for small values of N.

For N, a6 digit number, and « = 10~4, square roots to 4D were obtained

in the following times.

N time in seconds

0.9 25
0.8 29
0.7 38
0.6 50
0.5 56
0.4 63
0.3 75
0.2 103
0.1 157

Starting values, x0, could, of course, be gang punched from a master

deck, which would make the setup considerably faster. However, the order

of the deck is then disturbed. If the order of the deck is not critical, the

remarks below are pertinent; moreover, the entire job (for three digit roots)

can be done readily from a master deck of 1000 cards, by collating and gang

punching.

If division is available and it is possible to order the cards on the numbers

N, then the formula

(3) Xi+i = i(xi + N/xi)

gains speed if the starting value for each card is the result from the previous
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card. Approximately eight cards per minute can be calculated, with eight

digit N's and square roots to 4D.

The answer from the previous card is taken as x0. The chief problem in

the wiring is to obtain a starting value for the first card, since the 602A

performs all the programming wired, in dummy form, before the first card

is read. If the cards are in descending order_on N, the first starting value can

be taken as N, provided that the dummy programming can be skipped. This

latter can be accomplished by wiring to "read" from an early program

through the normal side of a selector which is then latched for the remainder

of the run.

Diagrams of the setups used at the Numerical Analysis Laboratory will

be published shortly.

J. Hollingsworth

F. Gruenberger

Numerical Analysis Laboratory

University of Wisconsin

Madison, Wisconsin

151. A Numerical Study of a Conjecture of Kummer.—The

generalization to the cubic case of the well-known (quadratic) Gauss sum

was first investigated by Kummer.1 He showed that the expression

(1) xp = 1 + 2   "¿:~ cos(2wv3/p)
r—l

for all p 35 1 (mod 3) satisfies the cubic equation

(2) f(x) = x3 - 3px - pA = 0

where A is uniquely determined by the requirements

(3) 4p = A°- + 27B\        A a 1    (mod 3).

Equation (2) clearly has three real roots for each p. Kummer classified the

primes p = 1 (mod 3) according to whether the Kummer sum is the largest,

middle or smallest root of equation (2). He conjectured that the asymptotic

frequencies for these classes of p are (in the order above) \, \, \. To check

this surmise he calculated the first 45 of the xp and found the densities to

be .5333, .3111, .1556.

This problem was brought to the attention of the authors by E. Artin

who suggested the desirability of further testing the conjecture since its

truth would have important consequences in algebraic number theory.

Accordingly the primes p = 1 (mod 3) from 7 through 9,973 were tested.

We give below a summary of the resulting densities. In this tabulation we

have arbitrarily divided the primes into six groups of 100 each, designated

by I, • ■ -, VI and a final group of eleven primes, VII.
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Number of primes p = 1 (mod 3) such that

xp is the xp is the xp is the
Group largest root middle root smallest root

I 54 28 18
II 41 38 21

III 46 33 21
IV 39 32 29
V 43 29 28

VI 44 38 18
VII 5 3 3

Total 272 201 138
Density .4452 .3290 .2258

These results would seem to indicate a significant departure from the con-

jectured densities and a trend toward randomness.

The method of calculation was this: Each root of (2) lies in one of the

intervals (— 2p\ — £*), (— p*, + p>), (£*, 2p^) as may be seen directly

from the form of (2) with the help of (3). For each relevant p the expression

(1) for xp was evaluated, its sign was determined and its square compared

to p. This determined in which of the three intervals just described the xv

lies. To check that xv was indeed a solution of (2), (3) and to determine the

precision of the evaluation the expression

(4) /(**)//'(*,)

was then calculated. This latter check was performed by first transforming

the Xp into decimal form for tabulation and then retransforming these results

back into binary form before evaluating the expression (4). In this manner

both the calculation proper and the conversion to decimal form of the

results were checked.

The trigonometric expressions appearing in (1) were evaluated by power

series. Each angle was reduced mod 2% and then mod ir until it-lay between

— x/2 and + 7r/2. Then the cosine of \ of this angle was calculated keeping

five terms in the series expansion. The "double-angle" formula for cosines

was then used twice to obtain the desired cosine.

The calculation involved about 15 million multiplications counting the

checking mentioned above. The values of p were introduced in blocks of 200.

The entire calculation was carried out twice to ensure reliability. The

authors are indebted to Mrs. Atle Selberg who programmed and coded

the calculation.
J. von Neumann

. , „    . H. H. Goldstine
Institute tor Advanced study

Princeton, New Jersey

1 E. E. Kummer, "De residuis cubicis disquisitiones nonnullae analyticae," Jn. f. d.
reine u. angew. Math., v. 32, 1846, p. 341-365.

CORRIGENDA

v. 6, p. 262, insert Emch, G. F. 247.

v. 6, p. 265, under Myers insert 54.

v. 6, p. 268, under Yowell insert 254.

v. 7, p. 31, 1. 11 of MTE 218; for - log p read log p.


