


Stability Conditions in the Numerical
Treatment of Parabolic Differential Equations

1. Introduction. The numerical solution of a hyperbolic partial difference

equation is in some circumstances subject to an "instability" which has been

shown by Lewy and others1 to have a simple significance with reference to

the differential equation which the difference equation approximates. For

example, the difference equation

(1) (<bnj+i - 2<t>n,j + <bn,i-i)/(At)2 = c2(4>n+hJ- - 2<K,y + 4>n-l,3)/(A*)2

may be used to approximate the wave equation

(2) 4>u = c2<f>xz.

If initial values, 4>n, o and </>„, i, are specified (corresponding to the specifica-

tion of <b(x,0) and <bt(x,0)), equation (1) may be used to evaluate first <j>n, 2,

then #„,3, etc. If a "component" of <pn,j, i.e. a perturbation to <f>n,j which

preserves the satisfaction of the difference equation and its boundary specifi-

cations other than initial values, varies with « as ( — 1)" (i.e. with the short-

est wavelength which can be represented with the lattice spacing Ax) and

depends upon j as K>, then from (1)

(3) K2 - 2K + 1 = - 4aK;    <r = (cAt/Ax)2.

If 0- > 1, equation (3) has one real root of magnitude greater than unity;

hence this (shortest wavelength) component of <¡> grows exponentially with

j. Thus if this component is minutely excited, say through rounding errors, its

exponential growth may, for sufficiently large j, destroy the resemblance of

<bnj to the solution of (2). The possibility of such an uncontrolled growth of

error is termed "instability," its absence "stability." For n ( 1 no such

instability occurs.
The significance of the abrupt change in behavior of (1) as cAt exceeds

Ax may be seen as follows: Each <bnj is computed by (1) with the use of pre-

ceding values, 4>n.j-i and 4>n.i~i, and the neighboring values, <£„_!, y_i and

<l>n+i,j-i. Thus 4>n,j is subject to influence only from within a "generating

cone" described by j' <j, \n — n'\ ^ \j — j'\. It is ultimately determined

by those initial values <b„', 0 for which \n' — n\ ^ j. In the difference equation

the propagation of influences is thus limited to rates ^ Ax/At. The differential

equation (2) represents the propagation of influence along the characteristic

lines, x ± ct = constant; hence cannot be well represented by (1) unless

Ax I At is at least as great as c A more general study of hyperbolic difference

equations shows the presence of instability whenever the mesh ratio Ax/At

is too small to permit the propagation of influence along the characteristics

of the corresponding differential equation.

In the solution of parabolic difference equations stability conditions de-

pending on the mesh intervals may also arise. They are considerably more

burdensome than the above condition, usually requiring that At be small of
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the order of (Ax).2 By suitably modifying the difference equation, the limita-

tion imposed by the stability condition can be removed. The character of the

diffusion process described by a parabolic equation suggests that a stability

condition which limits At/(Ax)2 or even At/Ax is not fundamental. The

effects of a localized disturbance are appreciable within a range which in-

creases with elapsed time, /, about as tK Thus the region of appreciable in-

fluence can asymptotically be included within an arbitrarily narrow gener-

ating cone.

In sections 2 and 3 the stability condition limiting the time interval in a

conventional treatment of a simple parabolic differential equation is dis-

played and its burdensome character illustrated.

In section 4 an alternative simple parabolic difference equation approxi-

mating the same differential equation is shown to be stable for all values of

At/(Ax)2. It is shown in section 5 that the condition for convergence to the

solution of the corresponding parabolic differential equation is Ax —* 0,

At/Ax —> 0. In sections 7 and 8 various generalizations of this method of

calculation are examined, particularly with reference to their stability. In

these generalizations the definition of "instability" given above becomes

inapplicable. The term will there be used in a looser sense to indicate a tend-

ency toward the exaggeration of initially small "errors." Accordingly the

indications of stability given there are plausibility-proofs rather than

rigorous arguments.

2. Interval limitation for a one-dimensional diffusion equation. The

diffusion equation

(4) <b, = p(x)<t>xx;   p(x) > 0

may be approximated by the difference equation

(5) (<t>n.3+i — <t>n,j)/At = pn(4>n-i,j — 2<j>„, j + <j> „+1, j) / Ax2 ;    pn = p(nAx).

If initial vaues <j>n,o are specified, equation (5) permits the successive evalu-

ation of <pn, i, 4>n, 2, etc. An approximate stability condition for this process is

readily derived by the assumption that pn changes slowly with n. An alter-

nating component of </>„,y, 0„,y ~ (— l)n, then appears in #n,y+i modified by

the factor 1 - lAtpjAx2,

0»,y+i ~ (1 — 4:crpn)<S>n,j;    o- = At/Ax2.

An exponential increase of this alternating component may be expected if

pn > l/2(r over any appreciable region. The condition for stability is then

(6) a ^ \/2pM

where pM approximates the maximum of the pn. More precisely, the pro-

cedure described by (5) is unstable if an error in <bnj recurs in the same form

in <p„,i+i with increased magnitude, i.e. if an error component

ô<t>nj = Ki\n;    \K\ > 1

satisfies (5) and X„ satisfies homogeneous boundary conditions corresponding

to those imposed on <£„, y- For definiteness it may be assumed that <t>o, y and

4>N,j are specified. Then an "error-eigenfunction," X„, must satisfy

(7) - 4¿>X« " {K - l)AnA = ¿>„(X„-i - 2Xn + Xn+1) ;    X„ = \N = 0.
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Multiplying by \n/pn and summing yields

- 4P £ K2/pn = Z [Xn(X„+1 - Xn) - X„(X„ - X_l)]
n—0 n—0

AT-1 AT-1

=    2J   Xn(X„+l   —   X„)   —    2-,   Xn+l(X„+l X„)
n=0 »—0

¡V—1

= -  E  (Xn+i - X„)2 < 0;

thus the positiveness of an eigenvalue, p, follows from the assumed positive-

ness of pn. This requires that K < 1 ; hence instability can arise only if for

some error-eigenfunction K <— 1. The stability condition (6) holds

strictly if pM denotes the greatest eigenvalue, p, of (7).

The stability condition (6) imposes a burdensome limitation on the

numerical treatment of parabolic differential equations by this method since

a moderately fine spatial division may require an immoderately fine temporal

division. This will particularly be the case if a very fine structural repre-

sentation is required (large N) or if a great disparity exists between the

largest and smallest values of pn. If the range in t for which a solution is re-

quired is of the order of the time required for effective diffusion to the dis-

tance NAx, the number of time intervals required will be of the order of

Imax/Aí  ~ N2pM/pO

where pa approximates the smallest of the pn.

3. Application to the radial diffusion equation. To illustrate the above

general conditions we consider the simple diffusion equation

(8) <bt = 4>„ + <$>rlr; 4>(r,0) = $(r)
0(1,0 = a
<t>(R,t) = b.

Writing r = ex puts (8) in the form

(9) <bt = e~2x4>xx; <j>(x,0) = $(x)

0(0,0 = a
<]>(lnR,t) = b.

This is of the form of equation (4) with p(x) = er2x. The error-eigen-

function equation (7) is now

(10) 4pVn = (1 - K)r,n/o- = e-2nAx(Vn+1 + 2Vn + ,„_!) ;    m = VN = 0,

where r¡n = (— 1)"X„.

The greatest eigenvalue, pM, is readily approximated by a variation

principle :

For each solution of (10) the expression

X = 2 ¿ ,.(,, + 7j„+1)/E ii„W"Ax
n=0 0

takes on a stationary value, namely 4p.
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The maximum value permitted to x is then

(11) XM = 4pM = (1 - Kmin)/<r.

The condition for stability, Kmin ^ — 1, then requires

a   ^   2/xM —   O'crit-

A lower bound to xM, hence an upper bound to trcr¡t (for A7 = oo ) has been

obtained by setting ij„ = ne~ßn and maximizing x with respect to ß. The

resulting approximation to <rcrit is displayed (vs. Ax) in Fig. 1. To estimate

the error in this approximation numerical solutions of the difference equa-

tions for two values of Ax were carried out with excessive <r's. The rates of

growth of the dominant instabilities determine xM (by eq. 11), hence

tfcrit- These two "experimental" values are also shown in Fig. 1.

1.0+

- variational approximation to

Q     "experimental11 values

■t t if
Fig. 1.

To illustrate the uncomfortable limitation imposed by the stability-

condition we assume (arbitrarily) that the calculation is to be carried to

sufficiently great t that <f>(r,t) at r — 100 is substantially affected by the

inner boundary value, a. This requires ¿max ~ (100)2. To represent ade-

quately the structure of <f> near r = 1 requires, say, Ax = 0.1. Then the

stability condition requires

At ^ (rcrit(Ax)2 = 0.0085.

The number of "cycles" (j-values) required for the calculation is then

tmax/At ~ 106. A moderately fast electronic digital computer could complete

the calculation in a few hundred hours!

4. A generally stable difference equation. The difference equation (5)

determines a set of numbers, </>„;, which approximate the solution of the
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differential equation (4) at the junction points of the rectangular lattice

x = wAx, t = jAt. The alternative difference equation here considered makes

use of a diagonal lattice, obtained by omitting those junction points for

which n + j is, say, odd. The term <pt is now represented by the difference of

two $„y-values of the same n and j's differing by 2; i.e. <bt(nAx, jAt) ~

(<t>n,j+i — <j>nj-i)/2At;n -\-j odd. In the representation of <¡>xx by a second

difference with respect to n the end terms, </>n-i,y and 0„+i,y, may be used as

previously but the term, 4>„,j, corresponds to a point omitted from the lat-

tice. It is therefore replaced by the mean of the two terms of neighboring

j-values.

4>xx(nAx,jAt) ~ (<Ê„_i,y — <pn.j-i — <t>n,j+i + <¿„+i,y)/(Ax)2;    n +j odd.

The resulting difference approximation to (4) is

(12) <j>n,j+l —  <Pn.j-l   =   lpn<r(<t>n-l,j  ~  <l>n,j-l  ~  <t>n,i+l  + 4>n+l,j),

n +j odd,    pn > 0,    (j = At/Ax2

which may be written as

(13) <Ên,y+l   =  $n,j-l +  Ctn(<Pn-l,j  ~   1<Pn,i-l + 0„+l,y),

where
a» = 2pnc/(\ + 2pn(r);    0 < a„ < 1.

If the differential equation has terms in <bx and <p these may be represented

by (<t>„+i,j — <pn-i,j)/2Ax and (4>n.,+i + 0„,,_i)/2 respectively.

It is to be noted that the initial conditions required to permit calculation

with (13) require the specification of ^-values for two initial times (j-values),

or initial boundaries, x(t), when only one would be required by the conven-

tional difference equation. This requirement suggests that (13) is of hyper-

bolic rather than parabolic character (cf. section 5). The second set of initial

values may be computed from the first set by use of the conventional

equation with sufficiently small Ai.

In each cycle of the calculation <pnj may be evaluated for all «-values

associated with one j-value, even n occurring in one cycle, odd n in the next.

Alternatively the </>„,,- may be evaluated in each cycle for all n along a

diagonal line n + j = constant (or n — j = constant). These two orderings

of the calculation, called the "leap-frog" and "pyramid" methods respec-

ively, are shown in Fig. 2.
In the pyramid method the cycle number may be used to index the

(^-values in place of j. If the cycle number, m, is written as a super-script,

the difference equation (13) takes the form

(14) Ä+1   =<fn+ a„ W+l1 -  2 Cfn   + *£n).

This form of the difference equation displays clearly the similarity to the

"extrapolated Liebmann" form of the relaxation method.2

The qualitative behavior of the solution of (13) may be investigated by

examining the propagation of a spatially sinusoidal component of <p, treating

pn, hence also an, as a constant. If

X„,y = K'ein*i
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satisfies (13) for constant a„ then

K = K-1 + y(e~* - 2K~l + e*).

Hence

(15) K2 - 2Ka cos a + (2a - 1) = 0.

For each y, two values of K satisfy (15). Thus a sinusoidal component of

0 has two modes of propagation with increasing /. The propagation factors,

K, are shown in Fig. 3. For y near 0 or near x the propagation factors are

cycle #
m a i

k •-► •-► •    h

3  •-►•-►•->»3

2      •-► •-► •     2

1    • -;-► • -;->.--->•!
1   2   3   U   5   6   7

Leap-frog ordering of calculation

3
, »

m = 6 ."-*.        •        •        • 5

/       /       /  ,

V   >/   >/
• 3

•    •    •   *• i
n=123U567

Pyramid ordering of calculation

(n - j) = constant

Fig. 2.

real, for intermediate y they are complex. In no case is the magnitude of K

greater than unity. The difference equation (13) is thus seen to be stable for

any constant positive value of pn<r.

To show the stability of (13) for a varying a„, we assume the presence

of an error-eigenfunction of the form

0„,y = K'\n;    Xo = Xat = 0.
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Substitution in (13) yields

X„_i + X„(l - K2 - 2an)/Kan + Xn+1 = 0

or

(16) <o2(2X„ - Xn_i - Xn+1) - 4œ(c£l - 1)X„

+ (2Xn + Xn_i + Xn+i) = 0,

where

(17) K<= («- l)/(w + 1).

Multiplying (16) by X„* and summing over n = 1,2,- • -, N — 1 pro-
duces, after slight rearrangement of terms, the equation

(18) w2 £ |X„ - Xn_!|2 - 4<o "j? (c^1 - 1)|X„|2 + Z |X„ + X^,!2 = 0.

-1.0

Fig. 3.

The positiveness of the three summations ensures that the real part of <a is

positive, hence by (17)

(19) \K\ < 1.

If the fixed end conditions, X0 = X„ = 0, are replaced by the homogene-

ous boundary conditions,

Xi - Xo = AXo A and B real and positive,
\n-\ — Xa' = Ban

equation (18) is modified by the inclusion of additional positive terms in the

first and third summations. Then again (19) follows from the positiveness of

(añ1 — 1) ; hence the difference equation (13) is stable for any positive a.

5. Dependence of the solution on the lattice spacings. To illustrate the

dependence of the difference equation (13) and its solution on the lattice

intervals, Ax and At, we examine in detail the special case of constant p(x).
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This constant may be given the value unity without loss of generality. The

difference equation is then

(20) 0n.j+l   — 0n,j-l   =   2cr   (0n-l,j   — 0n,i-l  ~"   0n,j+l   + 0n+l,i),  °"   =   At/Ax2,

which approximates the homogeneous, one-dimensional diffusion equation

(21) 0,   =  0xx.

If the set of four 0-values connected by (20) are assumed to be imbedded in

a function 0(x,O which permits a power series expansion about the "center

point" (n,j), they may be described by the expansions

0„±i,,- = 0 ± AX0Z + - (Ax)24>xx ± -2 (Ax)3<l>xxx + ^r (Ax)40IXZX -]-,

0n,i±i = 0 ± A¿0( + - (AO20,i ± g (AO30¡1( + 24 {At)%mt +■■-.

Substitution into (20) then yields

(22) 0( - 0xx = Yi (A*)V*»« - (AO20«/(Ax)2 - g(AO20í(¡

- —(AO40iílí/(Ax)2+---.

The use of (20) as an approximation to the diffusion equation thus con-

sists in the neglect of the right member of (22). The use of small values of

Ax and Ai is not alone sufficient to justify this neglect. To make the second

term of the right member of (22) negligible requires also that the ratio,

At/Ax be small. If Ax and At approach zero with constant ratio, c = Ax/At,

the difference equation (20) does not approximate the parabolic equation

(21), but rather the hyperbolic equation

(23) 4>u/c2 + <bt = 0xx.

It may be noted that the mesh ratio, At/Ax, is just the maximum permitted

by the stability condition for the treatment of this hyperbolic equation by

the usual difference method. The stability of the difference equation (20)

may be regarded as arising from the introduction of this hyperbolic term in

the approximating differential equation.

The above considerations indicate that the requirement for accuracy of

treatment of the parabolic equation approximated by (20) is the smallness

of both Ax and At/Ax. The ratio, At/Ax is not, however, required to be small

in the order of Ax, as would be needed for a fixed value of o-. Since (21)

implies

0ÍÍ   =  0xxxx

the dominant terms in the right member of (22) may be written

0<   - 0xx   =  J^(Ax)20xxxx(l   -   12(72)   +..-.

Thus for fixed Ax the optimum value for At, from considerations of accuracy

alone, lies near 12_iAx2.
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The accuracy of the difference equation representation of (21) may be

examined by reference to the Fourier expansion used in establishing its

stability. A component of <j> having the sinusoidal dependence, ein'>, is

exponentially attenuated with increasing j by the factor K per cycle. The

attenuation factor, K, is determined by (15) and is double valued (again

suggesting the hyperbolic character of the difference equation). As shown in

Fig. 4, K+, the greater value of K, closely approximates the correct attenu-

ation factor, Kc = e-^" (i.e. the factor by which a sinusoidal component

giyxiAx ¡s attenuated in time At by the differential equation (21)) for small y.

With increasing y this greater K becomes progressively more unrealistic,

Fig. 4.

the more rapidly the greater is <r. For

0 5Í cost < (1 - l/4<r2)*

the two K's become complex, of common magnitude [(2<r — l)/(2cr + 1)]*.

For negative values of cos y the attenuation factors are the negatives of

those for the corresponding positive cos y. Since only even values of n + j

are considered these negative values of cos y are superrogatory.

The rapid increase of the error in K+ with increasing y would seem to

indicate that the difference equation (20) is of unacceptable accuracy except

for small a. After a large number of cycles of calculation (large j), however,

the two values, K+ and Kc, appear in the solutions of (20) and (21) raised to

the power j. For sufficiently large j, both K+' and KJ are essentially zero
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except for very small y. An approximate measure of error is thus the greatest

value of the discrepancy,

D¡ = Kj - K+' = r*+ - K+>\

The solution of (15) in power series in y2 yields

K+ = Kc exp[- tV3 - «r/12) +••■]•

For j^> 4(<r — l/12tr) the greatest discrepancy occurs at y2 ~ 2/ja and

has the value

Dj S 4e-2(<r - l/12o-)/j.

The difference equation (20) thus permits increasingly accurate representa-

tion of the solution of the differential equation (21) as j becomes large in

comparison with 4tr.
The above estimate of accuracy takes into account only the errors in the

greater attenuation factor K+. An additional error may arise from the fail-

ure of the initial specification of <¡>n, —values to associate the correct amplitude

with the components which decay with attenuation factors, K+. Since

initial <£-values must be specified for two successive j-lines it is not sufficient

that the #'s closely represent the initial values of the corresponding para-

bolic differential equation. It is also necessary that the initial time deriva-

tive be well represented. The latter requirement is the more stringent the

larger is a, since K+ and K- are then closer together, hence more difficult to

discriminate in the initial-value specification. The value a = \ (hence

a — |) is especially favorable in this regard, since for it K- is identically

zero (cf. eq. (15)). The special property of a = § is also to be seen in (13).

For a = | the terms in <pn,j-i drop out, hence specification of initial (^-values

for one j-line suffices.

Apart from the special case of constant pn, no choice of a makes an uni-

formly equal to f. It nevertheless seems expedient to begin the calculation

with a o- which makes \ a typical value for an- After a sufficient number of

cycles <r can conveniently (i.e. without requiring interpolation) be increased

by an odd integral factor.

6. Examples of the use of the generally stable difference equation. The

first example chosen to illustrate the use of the difference equation (13) is

the equation of diffusion to the boundary of a one-dimensional semi-infinite

medium. Its differential equation and boundary conditions are

4>t = <l>xx for t > 0,    0 < x < oo,

<p(x,0) = 1,    0(0,0 = 0.

It has the simple solution

4>(x,t) = erf (x/2/*).

Numerical solutions were obtained by the pyramid method for two

values of a, \ and 5. The boundary values are

(24) <pom = 0,    4>n° = 1 for n > 0.

Subsequent «^-values are determined by the relation

(25) tf+1 = 4>n + anWÍ/ - 2tf + tfU),
a„ = J or 10/11 as tr = | or 5.
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For each cycle (m-value) the 0»+1 are computed for successively smaller n,

beginning with an n sufficiently large that 0™+1 does not differ appreciable

from unity. (Here 2m = n + /.)

The resulting 0-values are displayed in Fig. 5 and 6, plotted for several

values of t = At (2m — n) vs. the similarity variable,

p = x/2/i = n/2{a(2m - »)]*.

The approach of 0„m to <t>(p) with increasing j = 2m — n, hence a

fortiori with increasing t = ajAx2, is noticeably more rapid for the smaller o-.

•?+

•S+-

' 18-

erf(.~ )

///

¿Z"

ff
f

/,'

1/

i
i

0 Ts>. = x/2C = n/2     (2o - n)   *
(T =\

2» - n = 8

2n - n = 18

■2m-n=— , P- QTt^ )

-H + -f-
• U 1.0 1.6

FlG. 5.    Results of One Dimensional Diffusion Problem

A second example used is the radial diffusion equation,

(26) 0i=0rr + 0rA;    r > 1.

Setting r = ex permits writing (26) in the form

(27) 0, = e~2x<pxx;   x > 0.

The boundary values

were chosen.
0(0,0 = 0,    0(x,O) = 1
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Again the pyramid ordering was used ; hence the difference equation is

(25) with
an = 2o-e-2nAx/(l + 2o-e~2nAx).

The boundary conditions of the difference equation are given again by (24).

Three solutions were obtained, with intervals as follows:

Case

I
II
III

Ax

.05

.05

.10

At

.00125

.0125

.05

o- = At/ Ax2

The solution in Case I shows good accuracy even in the first few cycles.

A comparison with an analytically derived solution for t = 1/100 = 8At is

shown in Fig. 7. The four points plotted are obtained in the fifth, sixth,

seventh, and eighth cycles respectively.

A somewhat greater number of cycles is required for comparable ac-

curacy in Case II.

1.0

0

•5 4-

0 v» ̂  = x/2t5" - n/2fr(2Jl - *)J*

-   2n-n =   5

-2 a - n =    20

-2b- n =    h$

- 2»- n = •• , 0- erff^s )

l.'O l.li
s-*

Fig. 6.    Results of One Dimensional Diffusion Problem
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l.oJ-

•5 +

~@-

Radlal diffusion problem

0>  vs x for t = .01 = 8 t
*      <r  -S

Case 1,  2 m- n = 8

. analytic solution

Fig. 7.

Its solution is shown for t = 5Ai and t = 17A/ in Fig. 8. For the latter

time the plotted points are obtained in the ninth and subsequent cycles, and

are of about the same accuracy as the points in Fig. 7.

The solution in Case III is shown in Fig. 9 for / = SAt, 15A/, and 40Ai.

The values for 40A/ = 2.0 (derived from the twenty-first and subsequent

cycles) are not distinguishable in this graph from the previous cases nor

from the analytic solution.

7. Extension to other parabolic equations. The demonstration given

above of the stability of the leap-frog (or pyramid) method depends upon

an eigenfunction expansion of the errors in the dependent variable. (So, in

fact, does the definition of stability there used.) To justify the use of these

methods for broader classes of parabolic equations other indications of

stability must be sought. In section 8 several types of linear parabolic

difference equations are shown to display properties indicative of stability.

No uniform definition and proof of stability has been produced, however.
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1.0 4-

9  -5 +

t = .0625

t ■ .2125

Radial dlffuaion problaa

9 Tl X f or t • .0625 «M .2125

Cut n (2a - n » 5 «ml 17, «" ■ 5)

Case t ( «- - |)

Ï"
Fig. 8.

A similar computational technique can be applied to a nonlinear equa-

tion,

(28) 0, =/(0, 0x, 0xx, x, t).

In suitable cases 4>(x,t) may be sufficiently well represented by a set of num-

bers, 0„,y, satisfying the corresponding difference equation,

(29) (0„,,-+l   -  0„,y_l)/2A<   = /[|(0n,3+l  + 0n,3-l),       §(0n+l,y  ~   0„-l,y)/AX,

(0»+i,y - 0«,;-i - 0n,i+i + 0n-i,j)/(A^)2,    nAx,   jAt].

The stability of this computational procedure depends upon the rates of

growth of small deviations from this "correct" solution. If equation (29)

permits a power series development in these deviations then they will, when

sufficiently small, be governed by a linear parabolic difference equation of

9

Radial diffusion problem

Ç-n x for t « ,2S» .7St and 2.0

Casa HI (2a-n = S» IS, and UOj «" = 5)

Can« I ( «• = i)

1.0 2.0

Fig. 9.
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the same form. The above stability arguments for linear equations thus

indicate a wide range of usefulness for this procedure as applied to nonlinear

equations.

To illustrate this procedure we consider the equation describing the one-

dimensional isothermal flow of a perfect gas in a porous medium.

(30) <t>t = (<t>2)xx   for   t > 0,    x > 0

4>(x,0) = 1;   0(O,¿) = 0.

A convenient corresponding difference equation is

A4> —  <t>n.j+l   — <t>n,j-l   =   2a{<b2n-l,j  —   2(j}2n,j-l  + 4>2n+l.j  ~   A0 (0„_i, y

+ 0n+l.j)]-

The use of <£n-i,y + 4>n+i.j rather than </>„, y-i + <t>n.j+i as the coefficient of

A<j> in the right member is consistent with the order of approximation to (30)

.66

•6U ■

S
.62 -

.60 --

.53
10

Interpolated ?  2 n/y  for ?= 0.6
with successively increased

(points smoothed)

«■=5-

IT ï&3
t/initial^t

Fig. 10.

iöo

'  <r=25

5ÓO 10Ö0

used and simplifies the explicit expression for <pn.j+i- This is

(31)      <Pn.j+l   = <t>n,j-l + 2<r[02„_i,y —  2<t>2n,j-l + <t> n+1, j~]

/[l  +<?(<!> n-i,j + <t>n+l,i)l-

Solutions to (31) were obtained with a initially given the value 1, later in-

creased by successive factors of five. (An attempt to start a solution with

a = 5 led to uncontrolled oscillation.) When a was not increased too soon,

qualitatively correct solutions were obtained. The solution of (30) is of the

form <p(x/t^). Accordingly, to provide a measure of accuracy of the approxi-

mation of 4>n,j to the solution of (30), the <pn,r values for each cycle were

used to determine a graphically interpolated value of % = n/j* corresponding
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to the arbitrarily selected value, 0„,y = 0.6. The discrepancy between £ and

its asymptote, approximately 0.586, indicates the order of inaccuracy of the

solution. Fig. 10 shows values of £ for a family of solutions of (31) differing

in the number of cycles carried out at each value of a. The abscissa, dis-

played logarithmically, shows / in units of the initial At rather than the

number of cycles of calculation performed. The error (of approximation to

the solution of (30)) is seen to increase and later subside slowly after each

increase in cr. The peak error decreases rapidly with deferral of the increase

in o-. To keep the error of the order of one percent requires a few hundred

cycles at each o--value, somewhat more in the later stages.

8. Stability for the general parabolic linear equation. The differential

equation,

(32) 0i = p(x,t)<pxx + a(x,t)4>x + r(x,t)<t>

may be approximated by the difference equation

(33) (0n,y+i - 0n,y-i)/2A/ = £„y(0n+i,y - 0n,y+i - 0n,y-i + 0„_1,y)/Ax2
+ 2ny(0n+i,y - 0„_i,y)/2Ax + rny(0»,y+i + 0n,y_i)/2 ;    n + j odd,

where the notation and lattice structure is as described above. The solution

of (33) may be expected to provide a reasonable approximation to that of

(32) only if throughout the region considered

(34) p Ï 0

(35) \qAt/Ax\^ 1,    and

(36) |rAj| « 1.

It is assumed here that initial rather than final values of 0 are specified ;

hence (34) is necessary for the uniqueness of the solution. Condition (35) is

clearly required by considerations of causality similar to those described

above, (i.e., the lattice slope, |Ax/A/|, must clearly be at least as great as

the "stream velocity," |g|.) It ensures that the cone of determination of

each 0ny includes the characteristic curve of (32), satisfying

dx/dt = — q(x,t)

and passing through (nAx, jAt). In the event p = q = 0, (32) becomes an

ordinary differential equation (involving x as a parameter) which is reason-

ably approximated by (33) only if (36) is satisfied.
We first consider the case q = r = 0. Equation (33) then reduces to

(37) (0n.y+i - 0ny) = (0»,y_i - 0ny)(l - 2pnic)/(l + 2pn3<x)

where

(38) 0»y = H0n-i,y + 0n+i,y)    and    a = At/ Ax2

hence

(39) |0n,;+l — 0nj| ^   |0n,y-i — 0r.y|-

Each stage of the computation is characterized by a "front" in the n,j

lattice bounding the region for which 0-values have been computed. The

front is specified by a single-valued function, j(n), (j + n even), satisfying
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j(n + 1) = j(n) ± 1. For j ^ j(n), <f>„j has been computed, otherwise not. In

each step of the calculation a "low" point of the front, j(n) = j(n ± 1) — 1,

is replaced by j(n) + 2. Thus a "valley" in the front is replaced by a "hill."

We define a function of the front consisting of the sum of squares of the first

difference of <j>, taken along the front:

(40) F  =   Y.   (<*>», ;(n)   -  0„-l,y(n-l))2.
n

In a step of the calculation two terms of F are altered as a result of the re-

placement of 4>n,j(n) by 0n,y(n)+2- With the use of (39) it can be shown that

this replacement diminishes F unless pnj — 0 or 0„,y+i = 0n,y, in which

event F is unchanged. Thus as the calculation proceeds F decreases mon-

otonically except by reason of influences introduced at the boundaries. This

non-increasing character of the (positive) function, F, may be regarded as

indicating the stability of (33). (Here, and below, the term "stability" is

used loosely to indicate the absence of any tendency toward disastrous in-

crease of irregularities in <£„,y initiated by rounding errors and the like. It is

hoped that, pending development of rigorous criteria, these imprecise indi-

cations of "stability in the mean" may provide useful hints to the working

computer.)

A similar indication of stability can be displayed for the case,

(41) |gA//Ax| ^ 1;    |gAi/Ax| ^ 2p<r;    r m 0.

This permits writing (33) in the form :

(42) (1 + 2pa)^+ = (1 - 2po-)t- + qAt/Ax

where

(43) \¡/+   =   (cpn,j+l   —  4>n,j)/(<t>n+l,j  —  <t>n-l,j);      ty-   =   (<t>n.j-l   ~  <£n,y)/

(4>n+l,j  —  <t>n-l.j).

Thus either

(44) |*+| ^ |*_|    or    |*+| ^ i.        .

This permits the inference that |$n,y-i — 0„-i,y| + |0n+i,y — 0n,y-i| is (in

the first event) decreased or (in the second event) at least not increased as a

result of the replacement of 0„,y_i by 0n,y+i. We can thus define a positive

front-function

(45) G   =   2Z  |0n,j(n)   —  </>„_l,y(„_l)|
n

which is non-increasing (except by reason of disturbance at the boundaries).

The operation of the difference equation thus tends to bring the (^-distribu-

tion on the front to minimum total variation. This property gives a weaker

indication of stability than that described above since G, unlike F, is not

typically minimized by a unique </>-value. It nevertheless seems to justify

describing the difference equation as stable.

The second restriction of (41) limits the usefulness of this argument if

2pa becomes small. An argument which is then applicable may be made as
follows: Define

(46) Ml — <bn.j-i — 0n-i,y;    Mr = <pn+i,¡ — <¿>n,y-i

Pl  = <t>n,j+l  — 4>n-l,j]       Pr   =  0n+l,y — <t>n,j+l-
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Then equation (33), with r = 0, may be shown to imply

(47) (1 + qAt/Ax)PR2 + (1 - qAt/Ax)PL2 = (1 + qAt/Ax)ML2

+ (1 - qAt/Ax)Mn2 - 4pa(l + 2po-)~2{ML + Mr

+ (ML - MR)qAt/Ax}2.

A front-function which displays a decreasing tendency may thus be written

as

(48) H = JL (1 ± qAt/Ax)(<b„,j{n) - ««-i,«—«)*;
n

the ± as j(n — 1) = j(n) ± 1.

In (47) q is properly written qnj. In (48) it becomes ambiguous, being either

<Zn-i,y(n) or gn,y(n)±i- Thus we can only assert that H is non-decreasing except

by reason of variations in q with the advance of the front or disturbance in-

troduced at the boundaries.

In equation (33) with nonvanishing r, the precise meaning of "stability"

is not evident and no demonstration of properties approximating this con-

cept are known to us. A preliminary qualitative examination failed to dis-

close any indication that variations in 0 can grow to an alarming extent.
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On Over and Under Relaxation in the Theory
of the Cyclic Single Step Iteration

In order to speed up the sometimes very tedious computations in solving

equations by the single step method, the device of the so-called "incomplete

relaxation" (under or over relaxation) has been often used, although appar-

ently no systematic discussion of this device has been as yet tried.1

It may seem, however, that in the case of the "relaxation procedure" the

speeding up can be achieved in this way only in special cases, at least in the

case of a symmetric positive definite matrix. Indeed, if the progress of the

computation is measured by the decrease of a corresponding quadratic form

A (ft) depending on the &-th approximating vector fk, we have the formula

(1) A(U) - A(U+x) = ik(2 - qk) \rN)t\2/aNkNk


