230.-K. Hayashi, Tafeln der Besselshen, Theta-, Kugel- und anderer Funktionen, Berlin, 1930.

Table X of 12 D values of square roots contains the following errata.
The starred entries have been noted by Fukuoka. There are 27 other errors in the 11th and 12th places.

k^{2}	For	Read
0,217	0,465831514606	0,465832587954
0,289	0,537587203229	$0,537587202229^{*}$
0.498	0,705549431295	$0,705691150575^{*}$
0,543	0,736885330292	$0,736885337078^{*}$
0.699	0,836062192613	0,836062198643
0,787	0,887130204049	0,887130204649
0,800	0,894427091000	0,894427191000
0,845	0,919238810103	0,919238815543
0,917	0,957601117376	0,957601169590
2,53	1,590577372059	1,590597372059
2,90	1,702938639593	1,702938636593
3,17	1,780449381280	1,780449381476
6,40	2,529822028135	2,529822128135
7,36	2,712931893250	2,712931993250
8,55	2,924038303193	2,924038303443
8,71	2,941270912675	2,951270912675
8,72	2,942964612047	2,952964612047
8.73	2,944657340539	2,954657340539
8.74	2,946349099819	2,956349099819
8,75	2,948039891550	2,958039891550
8.80	2,966479384838	$2,966479394838^{*}$
8.98	2,996662812754	$2,996664812754^{*}$
9,31	3,051229250478	3,051229260487
9,51	3,083828788922	3,083828789022
14,1	3,754996666656	3,754996671104
14,3	3,781534079826	3,781534080238

Friedemann Singer
Robert-Blum-Strasse 11
Halle (Saale) Germany

Ludwig Stammler

Reilstrasse 129
Halle (Saale) Germany

UNPUBLISHED MATHEMATICAL TABLES

159[A].-National Physical Laboratory (Great Britain), Tables of Binomial Coefficients. 20 quarto pages. Deposited with the Royal Society (no. 15).
The Binomial coefficients $C_{n}=\binom{x}{n}$ are given to six decimal places for $x=0(.001) 1 ; n=2(1) 8$. These are coefficients in the Newton-Gregory formula for interpolation with forward differences.

160[D,L].-Institut de Mathématiques Appliquées, École Polytechnique de l'Université de Lausanne (Switzerland). Manuscript in possession of the author.
Table of the function $F(x)=\sin x / x$ and of its derivatives $d^{n} F(x) / d x^{n}$ for $x=0(.01) 4, n=0(2) 16,10 \mathrm{D}$.

This table has been obtained by subtabulation from another table calculated on the base of series for $x=0(.1) 4.3$. A National accounting machine (class 3000) was used for the subtabulation. The error in the original tables does not exceed .55 units of the last order.

Сh. Blanc

161[D].-Submarine Signal Division of the Raytheon Manufacturing Company, Transducer Department, Boston, Sines and Cosines of the Decimal Circle. 10 lithographed octavo pages of tables. Deposited with the Royal Society (no. 2).
This table gives $\sin \alpha$ and $\cos \alpha$ for $\alpha / 2 \pi=0(.001) 1$ to 5 D when the entry is less than $1 / 6$ and to 4 D otherwise.

162[E].-A. Young \& T. Murphy, "Tables of the Langevin Function and its inverse," 6 leaves. Deposited in UMT File, also in the depository of the Royal Society (no. 21).
The function $L(x)=\operatorname{coth} x-x^{-1}$ is tabulated for $x=0(.01) 7.50$ to 6D.

A comparison of this table with previously existing tables reveals errata in the previous tables which will be found in MTE 228.

163[G].-E. M. Ibrahim, Tables for the plethysm of S-functions. Deposited with the Royal Society (no. 1).
This comprises about two dozen large sheets of manuscript. The purpose of these specialized algebraic tables is described by the author in Quar. Jn. Math. (Oxford Series), Ser. 2, v. 3, 1952, p. 50-55. They relate to a special type of multiplication connected with symmetric functions and extend to partitions of a total degree of 18.
$164[\mathrm{I}, \mathrm{L}]$.-C. W. Jones, J. C. P. Miller, J. F. C. Conn, \& R. C. Pankhurst, Tables of Chebyshev Polynomials. 2 typed double-foolscap sheets. Deposited with the Royal Society (no. 7).
These tables give exact values of $C_{n}(x)=2 \cos \left(n \cos ^{-1} \frac{1}{2} x\right)$ for $x=$ $0(.02) 2$ and $n=1(1) 10$. For $n=8,9,10$ they extend and complete the curtailed values given in the table described in RMT 381, MTAC, v. 2, p. 262. [See also RMT 1103.]

165[L].-Admiralty Research Laboratory, Solution of the Equation $\left(y^{\prime \prime}\right)^{2}=y y^{\prime}$ and two other Equations. 3 foolscap manuscript pages of tables and 4 pages of description. Deposited with the Royal Society (no. 9).
The solution of the equation $\left(y^{\prime \prime}\right)^{2}=y y^{\prime}$ for which $y=0, y^{\prime}=1$ when $x=0$, is tabulated to 6 decimals for $x=0(.05) .5(.1) 6$ and facilities are provided for interpolation.

The integral

$$
2 \pi^{-\frac{1}{2} \beta^{-2}} \exp \left(-\rho^{2}\right) \int_{0}^{\beta} \epsilon I_{0}(2 \rho \epsilon) \exp \left(-\epsilon^{2}\right) d \epsilon
$$

is tabulated to 4 decimals for the range $\beta=0(.25) 4, \rho=0(.25) 5$. Interpolation is possible in this table, but no differences are provided.

The root x of the equation $u \sin x-\cos x+e^{-u x}=0$ that lies between π and 2π is tabulated to 4 figures for $u=.1(.01) .3(.02) 2$ and $u^{\frac{1}{2}}=0(.02) .5$. Interpolation is linear.

166[L].-M. S. Corrington, Tables of Fresnel integrals, modified Fresnel integrals, the probability integral, and Dawson's integral. Radio Corporation of America, R.C.A. Victor Division. 25 quarto pages. Deposited with the Royal Society (no. 4).
These tables give values for $x=\frac{1}{2} \pi u^{2}=0(.001) .02(.01) 2$ of the functions

$$
\begin{aligned}
& C(u)=\frac{1}{2} \int_{0}^{x} J_{-\frac{3}{3}}(t) d t=\int_{0}^{u} \cos \left(\frac{1}{2} \pi t^{2}\right) d t \\
& S(u)=\frac{1}{2} \int_{0}^{x} J_{\frac{1}{2}}(t) d t=\int_{0}^{u} \sin \left(\frac{1}{2} \pi t^{2}\right) d t \\
& C h(u)=\frac{1}{2} \int_{0}^{x} I_{-\frac{1}{3}}(t) d t=\int_{0}^{u} \cosh \left(\frac{1}{2} \pi t^{2}\right) d t \\
& \operatorname{Sh}(u)=\frac{1}{2} \int_{0}^{x} I_{\frac{3}{3}}(t) d t=\int_{0}^{u} \sinh \left(\frac{1}{2} \pi t^{2}\right) d t \\
& H\left(x^{\frac{1}{3}}\right)=\frac{\sqrt{2}}{\pi} \int_{0}^{x} K_{ \pm \frac{1}{2}}(t) d t=\int_{0}^{x} \frac{e^{-t}}{\sqrt{\pi t}} d t=\frac{2}{\sqrt{\pi}} \int_{0}^{x \frac{1}{3}} e^{-t^{2}} d t
\end{aligned}
$$

and

$$
D\left(x^{\frac{1}{2}}\right)=\frac{\sqrt{2}}{i \pi} \int_{0}^{-x} K_{ \pm \frac{1}{2}}(t) d t=\int_{0}^{x} \frac{e^{t}}{\sqrt{\pi t}} d t=\frac{2}{\sqrt{\pi}} \int_{0}^{x^{\frac{1}{2}}} e^{t^{2}} d t
$$

Two versions of the tables are given, one to 5 D and another to 8 D , with an error up to 2 final units.

167[L].-C. Mack \& M. Castle, Tables of

$$
\int_{0}^{a} I_{0}(x) d x \text { and } \int_{a}^{\infty} K_{0}(x) d x
$$

Deposited with the Royal Society (no. 6).
The integrals have been tabulated to 9D for the range of argument $a=0(.02) 2(.1) 4$. A brief description of the method of computation is given and also of the extent to which the tables are interpolable.

168[L].-National Physical Laboratory, Tables of the complex Jacobian zeta function. 9 foolscap pages. Deposited with the Royal Society (no. 14).

The Jacobian Zeta function Z_{n} of modulus $k=\sin \alpha$ can be found from the tabulated function f_{1} by the relation

$$
\begin{aligned}
Z_{n}\left(K \psi_{1}+i K^{\prime} \phi, k\right) & =f_{1}\left(\psi_{1}, \phi, \alpha\right)+i f_{2}\left(\psi_{1}, \phi, \alpha\right)-\frac{1}{2} i \pi \phi / K \\
f_{2}\left(\psi_{1}, \phi, \alpha\right) & =f_{1}\left(1-\psi_{1}, 1-\phi, \frac{1}{2} \pi-\alpha\right)
\end{aligned}
$$

where K, K^{\prime} are the complete elliptic integrals of modulus k. f_{1} to 3 significant figures is given for $\psi_{1}=0(.1) 1 ; \phi=0(.1) 1 ; \alpha=5^{\circ}\left(5^{\circ}\right) 85^{\circ}$. No provision is made for interpolation.

169[L].-National Physical Laboratory, Integrals of Bessel Functions.
2 quarto pages. Deposited with the Royal Society (no. 17).
10D values of $\int_{0}^{x} J_{0}(t) d t$ and $\int_{0}^{x} Y_{0}(t) d t$ for $x=0(.5) 50$. No provision is made for interpolation.

170[L]. -National Physical Laboratory, Table of

$$
\int_{0}^{2 \pi} J_{1}^{2}\left(2 k \sin \frac{1}{2} \theta\right) \cos ^{2} \frac{1}{2} \theta d \theta
$$

1 quarto page. Deposited with the Royal Society (no. 18).
4 D values are given for $k=0(.1) 10$. The table is interpolable using second differences, but no differences are given.

AUTOMATIC COMPUTING MACHINERY

Edited by the Staff of the Machine Development Laboratory of the National Bureau of Standards. Correspondence regarding the Section should be directed to Dr. E. W. Cannon, 415 South Building, National Bureau of Standards, Washington 25, D. C.

Technical Developments

A SPECIAL PURPOSE DIGITAL COMPUTER

1. Design considerations. The design considerations of a special purpose computer for the solution of a large number of simultaneous linear, algebraic equations depend not only on the number of equations with which the computer must deal but also upon the properties of the matrix of the equations, the time to be allowed for computation and the required accuracy of the solution. In this particular case, it was estimated that up to 1200 equations might be expected and the arbitrary time of one day was allowed for computation, after the problem had been set up on the computer. An accuracy of one part in 100 was demanded in the solutions.

A set of simultaneous equations can be represented in the matrix notation as

$$
\begin{equation*}
A X=C \tag{1}
\end{equation*}
$$

