

Computing Eigenvalues and Eigenvectors of a Symmetric Matrix on the ILLIAC

One of the programs in the library of programs for the University of Illinois' electronic digital computer, known as the ILLIAC, is a program for finding the eigenvalues and eigenvectors of a symmetric matrix. The iterative method used is the rotation of axes method discussed by H. H. Goldstine ${ }^{1}$ in an unpublished paper and referred to by Taussky \& Todd ${ }^{2}$ as Jacobi's method. ${ }^{3}$ It consists essentially of performing a sequence of orthogonal transformations on the matrix, where each transformation is designed to reduce a selected off-diagonal element to zero. Goldstine ${ }^{1}$ shows that the sum of the squares of the off-diagonal elements is reduced, during a single transformation, by the amount $2 a^{2}{ }_{j k}$ ($a_{j k}$ is the element reduced to zero by the transformation) and that the process produces a sequence of matrices whose limit is a diagonal matrix. His expression for an upper bound on the number of transformations required to diagonalize an nth order matrix is $\left[\ln \left(t_{0} / t_{i}\right)\right]\left(n^{2}-n\right) / 2$, where t_{0} is the sum of the squares of the off-diagonal elements of the original matrix and t_{i} is the same quantity after the i th transformation. Here it is assumed that $a_{j k}$ is always greater than the average off-diagonal element in absolute value. Our results so far indicate that this bound is from ten to twenty times greater than the number actually required by our program. The eigenvectors are obtained by multiplying together the orthogonal matrices used in the successive transformations.

When the eigenvalues are not close, and the element $a_{j k}$ is small, reduction of $a_{j k}$ to 0 leaves the other elements unchanged in the first approximation. For the angle of rotation is given by the relation

$$
\tan 2 \phi=2 a_{j k} /\left(a_{j j}-a_{k k}\right) .
$$

When the off-diagonal elements are very small ϕ is of the order of $a_{j k}$ ($a_{j j} \neq a_{k k}$). Now off-diagonal elements are transformed by

$$
\begin{array}{r}
a_{r j}=a_{r j} \cos \phi+a_{r k} \sin \phi=a_{r j}\left(1-\phi^{2} / 2!+\cdots\right)+a_{r k}\left(\phi-\phi^{3} / 3!+\cdots\right) \\
a_{r k}=-a_{r j} \sin \phi+a_{r k} \cos \phi=a_{r j}\left(-\phi+\phi^{3} / 3!-\cdots\right) \\
+a_{r k}\left(1-\phi^{2} / 2!+\cdots\right)
\end{array}
$$

and hence are unchanged if second order terms are neglected. Thus one sweep through the off-diagonal elements reduces them to zero (up to terms of second order).

The purpose of this paper is to display some results of an investigation into the relative merits of
(1) two approaches to the problem of how to select the off-diagonal element $a_{j k}$ mentioned above, and
(2) two approaches to the problem of when to apply the convergence test so as to terminate the process after convergence.
The two approaches mentioned in (1) are
(a) to select the off-diagonal elements in sequence along successive rows of the matrix, and
(b) to select the largest off-diagonal element each time.

The two approaches mentioned in (2) are
(c) to apply the convergence test after each transformation, and
(d) to apply the convergence test after each group of $\left(n^{2}-n\right) / 2$ transformations, where n is the order of the matrix. The convergence test used was a test of the size of t_{i} using double precision.
Method (a) is the simplest to program for an electronic computer but will require more transformations for convergence than method (b). Thus the accumulated round-off errors should be less using method (b). Method (c) enables one to terminate the process as soon as the process converges, but requires many applications of the test. Method (d) applies the test only after going through the off-diagonal elements once. This means that overiterating will result and in the extreme case ($\left.n^{2}-n-2\right) / 2$ unnecessary transformations will be performed.

The library program mentioned in the first paragraph is called program 42. It uses methods (a) and (d) and requires a total of 190 storage locations in the memory. Two modifications of this program have been written which are slightly longer. Program 42A uses methods (a) and (c) and program 42B uses methods (b) and (c). Tables 1-5 display the results obtained using these three programs on seven matrices of each of the orders $20,16,12,8$, and 4 . They contain
A. The time required to diagonalize each matrix,
B. The number of orthogonal transformations required, and
C. An indication of the accuracy.

Tables 6-9 contain the eigenvalues of the thirty-five matrices. In order to conserve space only five decimal places are included.

The time referred to in A is merely the computation time and does not include the time required for input or output of data. The accuracy of the process (item C above) is determined by forming the sum of the squares of the components of the n residual vectors,

$$
r_{i}=A x_{i}-\pi_{i} x_{i} \quad i=1,2, \cdots, n
$$

where x_{i} and π_{i} are the eigenvectors and eigenvalues, respectively, of A. This sum of squares is small and is scaled by 2^{30} before being printed.

Of the thirty-five matrices used in this investigation five were correlation matrices which were available (numbers $1,8,15,22$, and 29) and the remaining thirty were matrices generated by the machine. The method employed to generate the elements of these matrices was to square a number and use the middle digits of the product. Each new number then was used to generate the following number. The computation times for diagonalizing the five correlation matrices are slightly longer than those for the machine generated matrices due to the fact that certain changes were made in the ILLIAC, just after the five correlation matrices were diagonalized, which increased the speed of certain arithmetic operations.

Several conclusions can be drawn from an inspection of the results. The simplest program (number 42) using methods (a) and (d) was the fastest despite the fact that it over-iterated. However program 42B, using method (b), was in general the most accurate in the sense that the sum of squares of residuals was smallest. Obviously, the method (d) is superior to method (c). Program 42 never required more than seven sweeps through the off-
diagonal elements, i.e., no more than $7\left(n^{2}-n\right) / 2$ transformations were required for convergence. It appears that method (a) required about one and one-half times as many transformations as method (b).

TABLE 1

Matrix	Time		Number of Transformations	$n=16$
	Min.			$\overline{2^{20} \Sigma r_{i j}^{2}}$
	PROGRAM 42			
8	3	28	840	. 00191
9	3	6	840	. 00163
10	3	6	840	. 00149
11	3	5	840	. 00142
12	2	39	720	. 00131
13	2	39	720	. 00104
14	2	39	720	. 00152
	PROGRAM 42A			
8	6	54	726	. 00163
9	6	23	724	. 00126
10	6	23	725	. 00106
11	6	21	721	. 00133
12	5	53	667	. 00126
13	5	50	663	. 00106
14	5	37	637	. 00154
	PROGRAM 42B			
8	8	10	425	. 00063
9	8	0	432	. 00066
10	7	53	426	. 00061
11	8	4	436	. 00070
12	7	47	421	. 00063
13	7	54	427	. 00072
14	7	57	430	. 00059

Matrix	Time		Number of Transformations	$\frac{n=12}{2^{20} \Sigma r_{i j}^{2}}$
	Min.	Sec.		
	PROGRAM 42			
15	1	17	396	. 000600
16	1	9	396	. 000591
17	1	9	396	. 000447
18	1	9	396	. 000450
19	1	9	396	. 000502
20	1	9	396	. 000579
21	1	9	396	. 000600
	PROGRAM 42A			
15	2	10	344	. 000681
16	1	59	340	. 000492
17	1	58	338	. 000506
18	1	58	339	. 000369
19	2	2	351	. 000407
20	2	2	351	. 000501
21	2	1	347	. 000631
	PROGRAM 42B			
15	2	33	217	. 000233
16	2	41	239	. 000307
17	2	33	228	. 000277
18	2	35	230	. 000233
19	2	25	216	. 000256
20	2	32	227	. 000257
21	2	39	236	. 000232
			3	

Matrix	Time		Number of Transformations	$n=8$
	Min.	Sec.		$\frac{2^{30} \Sigma r_{i j}^{2}}{}$
	PROGRAM 42			
22		20	140	. 000125
23		18	140	. 000134
24		18	140	. 000119
25		18	140	. 000118
26		18	140	. 000111
27		22	168	. 000165
28		18	140	. 000102
	PROGRAM 42A			
22		28	126	. 000160
23		28	135	. 000113
24		26	129	. 000112
25		25	121	. 000106
26		28	134	. 000088
27		29	143	. 000208
28		28	135	. 000102
	PROGRAM 42B			
22		35	97	. 000072
23		32	91	. 000047
24		30	88	. 000085
25		32	94	. 000063
26		32	93	. 000056
27		34	96	. 000043
28		34	97	. 000081

TABLE 4

Matrix \quad Min. Time \quad Sec. | Number of |
| :---: |
| Transformations |$\quad \frac{n=4}{2^{30} \Sigma r_{i j}^{2}}$

PROGRAM 42

29	2.5	24	. 0000212
30	2.4	24	. 0000095
31	3.0	30	. 0000070
32	2.4	24	. 0000075
33	2.3	24	. 0000137
34	2.4	24	. 0000110
35	2.4	24	. 0000086
PROGRAM 42A			
29	2.4	19	. 0000138
30	2.3	20	. 0000056
31	2.9	25	. 0000113
32	2.1	19	. 0000029
33	2.3	20	. 0000093
34	2.4	22	. 0000078
35	2.4	22	. 0000143
PROGRAM 42B			
29	2.4	17	. 0000055
30	2.3	16	. 0000051
31	2.4	16	. 0000053
32	2.4	16	. 0000030
33	2.4	17	. 0000042
34	2.4	16	. 0000067
35	2.4	19	. 0000090

TABLE 5

EIGENVALUES

1	2	3	4	5	6	7
+.72951	+.70548	+.61214	-.60855	+.34710	+.65011	+.55872
-.75242	-.54004	-.38161	-.52812	+.56507	+.36704	-.71648
-.54106	-.50730	+.45455	-.43533	-.74842	-.73229	+.60475
+.41564	-.23097	-.72650	+.78575	+.54166	+.68674	-.33592
-.58256	-.64287	-.53514	+.46933	-.61324	+.57402	-.53408
-.28102	+.58653	-.43796	-.64543	-.27147	-.59379	+.69971
+.52031	+.26919	+.75447	+.27829	-.49548	-.23771	+.36562
+.58046	-.10555	+.55998	+.71874	-.52582	+.42814	-.37732
-.41469	+.29675	-.30252	-.32482	+.52150	-.49613	-.60475
-.29046	+.52572	+.12832	-.22613	-.45968	+.24109	+.29305
-.33468	-.37614	-.27717	+.59033	-.34006	+.34885	-.20574
+.54923	-.43715	-.07906	+.35744	-.10921	-.13801	+.27637
+.02789	+.48254	+.30587	+.07084	+.29205	-.46256	-.07809
+.18720	+.35102	+.48978	+.21038	-.08419	+.27996	-.00028
.18534	-.16190	+.21471	-.11323	+.03378	+.05406	-.12379
+.13149	-.24689	-.23067	+.09255	+.18037	+.20607	+.41737
+.29696	+.06814	-.21203	+.02895	-.19826	-.41526	+.20575
+.05071	+.03994	+.23868	-.27643	+.00225	-.28314	-.28980
-.13306	+.17470	-.03577	-.06418	+.24630	-.05462	+.06703
-.05810	+.21225	+.02712	-.16923	+.07460	-.18670	+.13132

TABLE 6

EIGENVALUES						
8	9	10	11	12	13	14
+.62833	+.64790	+.65658	-.54089	+.26411	+.42710	+.60556
-.55535	-.50376	-.45344	-.38215	+.49948	-.47585	+.13948
-.64081	-.43511	+.46503	-.51589	-.49670	+.57891	-.68004
+.39019	-.05532	-.61847	+.59733	+.48355	-.24169	+.55796
-.50721	-.57457	-.28238	+.47695	-.60610	-.59440	+.51185
-.33063	+.47444	-.36903	-.47087	-.39261	+.62438	-.54204
+.32001	+.17786	+.53729	+.07674	-.52051	+.15495	-.24080
+.51316	+.02452	+.35702	+.06319	-.33774	-.19197	+.31760
-.29364	+.20854	-.24871	-.14883	+.40512	-.32898	-.43488
-.13233	+.51314	+.16411	-.23124	-.15733	+.27840	-.03264
-.19180	-.32012	-.21132	+.36210	-.26548	-.31017	+.33752
+.24308	-.24645	-.01296	+.06539	-.12244	+.28416	-.17560
-.02683	+.33257	+.12396	+.19461	+.19613	+.00504	-.32918
+.17290	+.31621	+.26874	-.07243	+.01189	+.06621	+.26982
+.02344	-.12027	+.19060	-.08335	+.05150	-.07676	+.05161
+.10861	-.18881	-.10576	+.10039	+.13602	+.18048	-.09026

TABLE 7
EIGENVALUES

15	16	17	18	19	20	21
$+.53175$	+. 46872	+. 54439	-. 44956	+. 26122	$+.38378$	+.57151
-. 54732	-. 53186	-. 38947	-. 32509	+.44123	-. 46303	+. 05192
-. 44538	-. 33823	+. 37032	-. 30085	-. 42957	+. 51761	-. 51638
+. 33602	+. 14008	-. 50660	$+.57480$	+. 24992	-. 27931	+. 45467
-. 14756	-. 40958	-. 22885	+. 29884	-. 58716	-. 48722	+. 39733
-. 16680	+. 40960	-. 33077	-. 28068	-. 32414	+. 30840	-. 30701
+. 20161	+. 17662	+. 29323	$+.08503$	-. 21857	+. 09502	-. 23531
+. 35719	-. 01891	+. 18885	+. 44081	-. 30374	+. 01101	+. 12498
-. 30020	+. 27312	-. 13267	-. 11625	+. 16273	-. 11119	-. 34457
+. 04760	+. 32131	+. 21655	-. 04640	-. 02549	+. 19796	-. 10689
. 06842	-. 20311	-. 02120	+. 21271	-. 26387	-. 20737	+. 23361
-. 12093	-. 24408	+. 0528	$+.04666$	+. 03641	. 23940	. 095

TABLE 8

EIGENVALUES						
22	23	24	25	26	27	28
+.39745	+.39005	+.42526	-.30457	+.17009	+.21844	+.50218
-.37863	-.41997	-.34751	-.28376	+.34870	-.29635	+.08990
-.35548	-.14337	+.32709	-.12749	-.30897	+.28240	-.25758
+.22612	+.16712	-.27489	+.21208	+.13591	-.07422	+.32270
+.04788	-.25903	-.19429	+.29716	-.45210	-.32743	+.02900
+.12765	+.27762	-.03599	-.03213	-.26639	+.46710	-.39965
+.06131	-.06557	+.17299	+.07477	-.16227	+.03887	-.17113
29		+.09796	+.37703	-.09466	-.01919	-.05480
+.12263	+.18964	+.26306	-.28179	+.19975	+.18424	+.16572
-.32853	-.21833	-.26037	-.12093	-.01266	-.14856	-.07177
-.03726	-.02269	+.14103	+.08960	-.28262	+.28318	-.22650
+.19951	+.05038	-.14230	+.16096	-.21660	+.03009	+.12923

TABLE 9

[^0]University of Illinois
Urbana, Ill.
Robert T. Gregory

[^0]: ${ }^{1}$ Institute for Advanced Study, Princeton, 1949.
 ${ }^{2}$ O. Taussky \& J. Todd, "Systems of equations, matrices and determinants," Mathematics Magazine, v. 26, 1952, p. 71-88.
 ${ }^{3}$ C. G. J. Jacobi, "Ein leichtes Verfahren, die in der Theorie der Säkularstörungen vorkommenden Gleichungen numerisch aufzulösen," Jn. reine angew. Math., v. 30, 1846, p. 51-95.

