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then the 0's and ^'s defined in this way form a solution to (d), the 0's being

mutually orthogonal and the ^'s being mutually orthogonal. The computa-

tions can be carried on sequentially. Let Xi be the largest eigenvalue of K, <t>x

a corresponding normalized eigenfunction and fi defined as above. Having

found 0i and \[/i we form the symmetric kernel, Ki associated with the

residual function z(x, y) — 4>\(x)^i(y). Then, the largest eigenvalue of Ki is

the next largest eigenvalue of K and we take 02 to be the corresponding

normalized eigenfunction with \(/2 defined as above. We continue in this

manner until we have the required number of functions. Incidentally, for

n = 1, a variational technique yields the necessary conditions for an

extremum :

<¡>(x) =   I   z(x, y)yp(y)dy/ I   V(y)dy,
Jo Jo

4>(y) =   I   z(x, y)<j>(x)dx/ I   <f>2(x)dx.
Jo Jo

These can be used to generate an iterative computation for 0 and ^. How-

ever, questions of convergence, proper initiating functions to achieve the

largest eigenvalue, etc. seem to be difficult. One final remark—the minimum
/»l    fi n

value of I    [z(x, y) — £ 0y(x)^(y)]2^^y is precisely the sum of the
Jo    Jo ,_1

remaining eigenvalues of K, i.e. the sum of the eigenvalues minus the sum of

the largest n eigenvalues, the former sum being equal to J J~z2dxdy.

Oliver Gross
The Rand Corporation

Santa Monica, California

1 S. P. Diliberto & E. G. Straus, "On the approximation of a function of several vari-
ables by the sum of functions of fewer variables," Pacific Jn. of Math., v. 1, p. 195-210, 1951.

A Logarithm Algorithm

The method of calculating logarithms given in this paper is quite unlike

anything previously known to the author and seems worth recording be-

cause of its mathematical beauty and its adaptability to high-speed com-

puting machines. Although there are well known methods1 which involve

continued fractions, these methods invariably utilize the analytic properties

of the logarithm function and not the arithmetic properties of the individual

logarithm. The first version of this algorithm is based directly upon such

arithmetic continued fractions. In a subsequent skeletonized modification,

however, continued fractions no longer appear explicitly.

Let a0 > »i > 1 be given. To find logeai we determine the two se-

quences
a2, a3,- ■ ■

n-i, «2, • • •,

where the n's are positive integers, by the relations

a>"< < a<_i < ain'+i

ai+i = a^i/ai"*".
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We define the complete quotient Xi > 1 by

a0 = aini+1'Xi.

Since
ai = a2xl

we write

Xi = n2 + 1/3:2

and so on. Thus we have the continued fraction

1 111loga0ai = —  ,   —  .   —  .
«1 + «2 + «3 H-

For example let a0 = 10, ai = 2. Then

23 < 10 < 24.

Therefore «1 = 3 and a2 = 10/23 = 1.25. Further:

1.253 < 2 < 1.254.

Thus «2 = 3 and a3 = 2/1.253 = 1.024. Continuing we obtain

i «i a¿

0 — 10
1 3 2
2 3 1.25
3 9 1.024
4 2 1.009741958
5 2 1.004336279
6 4 1.001041545

It follows that

1    ají   I   A   A    i    Alogioz      3 + 3 + 9 + 2 + 2 + 4 +

Breaking off the continued fraction at successive terms we find :

i rational approximation to logio2

1 1/3 = .33333333
2 3/10 = .30000000
3 28/93       = .30107527
4 59/196     = .30102041
5 146/485    = .30103093
6 643/2136 = .30102996.

Since logio2 = .30102999566 we see that each successive approximation

gives us approximately one more correct decimal place than the previous

one. This rate of convergence, one decimal place per cycle, is typical. If one

chooses at random an a0 and an au one will "almost always" find such a

rate of convergence. A method of estimating this universal rate is given

below.
Both phases of the recurrence rules given in (1) may be carried out simul-

taneously. One divides a¿_i by a, ; then the quotient by a¿ ; then that quotient
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by a,-, etc., until the resulting quotient is less than a¿. Then this last quotient

is öj+i and the number of divisions is «¿. In fact, this part of the process in-

volves only division.

The second part of the process, namely, that of obtaining the successive

fractions, may similarly be reduced to only addition, but at first we note

that from the theory of continued fractions if Pt_i/Q,_i and -P./Q, are the

rational approximations which include the terms up to l/«,_i and l/w¿

respectively; then

(2)
Pi+l  _ Pj-l + W.+ 1-P»

Qi+i      Ç,-_i + ni+1Qi

For example, above we had

P2/Q2 = 3/10, P3/Q3 = 28/93, «4 = 2;

Pi/Qt = 59/196.
and therefore

However, for an automatic computing machine we recommend the fol-

lowing variation which abstracts the contents of the last two paragraphs.

We maintain six registers A, B, C, D, E, and F. At each inning we do one of

two things :

Operation I    (if A > B) :
We put A/B in A, C + E in C, and D + F in D.

Operation II    (if A < B) :
We interchange A and B, C and E, D and F. We start with a0 in A, ax in

B, 1 in Ç and F, and 0 in D and E. The latest approximation to logeai is

always E/F.
In the example above we would obtain:

Op. I

Op. II

Op. I

Op. II

A
10
5
2.5
1.25

2
1.6
1.28

L 1.024

1.25

B
2
2
2
2

1.25
1.25
1.25
1.25

1.024

C
1
1
1
1

0
1
2
3

1

D
0
1
2
3

1
4
7
10

E
0
0
0
0

1
1
1
1

1
1
1
1

3
3
3
3

10

It is readily seen that in this variation we need not assume oo > «i, as

was done in (1), but merely that ao > 1 and a\ > 1. Further, if one or both

of these numbers are less than 1, then since

lOgaar1   = —  logaX,       logl/aX   = —  loga*,       logi/a*-1   =   luga*,

we may proceed as before after taking the reciprocals of those numbers less

than 1. We then multiply the fraction obtained by (— l)m where m is the

number of reciprocals taken.
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If it happens that the logarithm is a rational number, for instance log84

= 2/3, then at some point B becomes 1, the exact log is obtained and no

further changes in £ or F occurs. For example :

A
8
2
4
2
1
2
2
2

B
4
4
2
2
2
1
1
1

C
1
1
0
1
2
1
3
5

D
0
1
1
2
3
1
4
7

£
0
0
1
1
1
2
2
2

3
3
3

If only four registers are available then one may  (with some care)

economize by keeping C and D side by side in a register C and similarly E

and F in a register E.

Operation I now reads :

We put A/B in A and C + £ in C.
Operation II now reads :

We interchange 4 and B, C and 1?.
The example now reads :

B
10
5
2.5

C
.00010000
.00010001
.00010002

E
.00000001
.00000001
.00000001

Op. II-
1.0010415

1.0043363

1.0043363

1.0010415

.06432136

.01460485

.01460485

.06432136

We now split .06432136 into two parts and divide: logio 2 ~ 0643/2136 =
.30102996. Of course the "D" and "F" parts of the numbers must not be

allowed to overlap the first halves.

The simplicity of the rules given in either pair of Operations I, II is a

recommendation for use of this logarithm in automatic computing machines.

So also is the fact mentioned above that for "almost all" a0 and ax, the rate of

convergence is essentially independent of these numbers and is, on the aver-

age, about one decimal place per complete cycle (that is, for each Operation

II). We justify this claim as follows. Khintchine2 has shown that for "al-

most all" real numbers, 0 < x < 1, the regular continued fraction has the

property that the geometric mean of the w's is an absolute constant. This

number, known as Khintchine's constant, has been computed by the author

to ten figures3. Its numerical value is approximately

K = 2.685452001.

Now we saw in (2) that the w's regulate the rate of growth of the Q's. To

estimate this growth we assume that the Q's are governed (in the mean) by

the linear difference equation :

Ö.+1 = Qi-i + KQi.
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From the theory of such equations, we find that for large * :

< Qi * aii(K + [4,'+K?l*)}*

Now it is easily seen that the error in any approximation Pí/Qí is of the

order of (Qi)~2 and therefore, per average cycle, the error should decrease by

a factor of 4{K + (4 + K2)*}-2 = 1/9.1 or approximately one decimal

place.
Daniel Shanks

Naval Ordnance Laboratory

White Oak, Maryland

1 See for example, D. Teichroew, "Use of continued fractions in high speed com-
puting," MTAC, v. 6, 1952, p. 127.

2 A. Khintchine, "Zur metrische Kettenbruchtheorie," Compositio Math., v. 3, 1936.

p. 276-285.
8 Daniel Shanks, "Note on an absolute constant of Khintchine," MTAC, v. 4, 1950,

p. 28.

The Product Form for the Inverse in the
Simplex Method

Summary: When a matrix is represented as a product of "elementary"

matrices, the matrix, its transpose, its inverse and inverse transpose are

readily available for vector multiplication. By an "elementary matrix" is

meant one formed from the identity matrix by replacing one column ; thus

an elementary matrix can be compactly recorded by the subscript of the

altered column and the values of the elements in it. In the revised simplex

method,1 both the inverse and inverse transpose of a "basic" matrix are

needed; more significant, however, is the fact that each iteration replaces

one of the columns of the basis. In the product form of representation, this

change can be conveniently effected by multiplying the previous matrix by

an elementary matrix ; thus, only one additional column of information need

be recorded with each iteration. This approach places relatively greater

emphasis on "reading" operations than "writing" and thereby reduces com-

putation time. Using the I.B.M. Card Programmed Calculator, a novel

feature results : when the inverse matrix is needed at one stage and its trans-

pose at another, this is achieved simply by turning over the deck of cards

representing the inverse.

Introduction:

The simplex method is an algorithm for determining values for a set of n

non-negative variables which minimizes a linear form subject to m linear

restraints.1'2"'3 It may be characterized briefly as a finite iterative procedure.

Each iteration produces a new special solution to the restraint equations

involving a subset of m of the variables, only one element of the subset

changing on successive iterations ; the remaining n — m variables are equated

to zero. The vectors of coefficients corresponding to the subset of m variables

are linearly independent and constitute a basis in m-dimension real vector

space. In the original simplex method2" (as coded for the SEAC4 or as found


