On Irregular Negative Determinants of Exponent 9n

It may first be stated that this article is concerned only with the irregular negative determinants which occur in the study of quadratic forms. (The technical terms used below, e.g., "determinant," "irregular," "exponent," "duplicating," "opposite," and "genera II, IV, VIII, etc.," are fully explained in Mathews, "Theory of Numbers" (Part I., 1892) on pages 59, 178, 182, 149, 68, and 132 respectively [1].)

Only three examples of the above determinants have as yet been given in mathematical literature, viz., $-D=3299$ (Scholz and Taussky) [2], 6075 (Pepin) [3], and 11907 (Gauss) [4]. The writer, in his Thesis for the London Ph.D. degree written in 1953, gives 55 more examples, the complete table of 58 determinants up to the limit 150,000 being :

$-D=$| 3299 | 56403 | 94284 | 117612 |
| ---: | ---: | ---: | ---: |
| 6075 | 58563 | 97200 | 120987 |
| 11907 | 60075 | 99387 | 122715 |
| 17739 | 64395 | 101675 | 128547 |
| 23571 | 70227 | 103627 | 132300 |
| 24300 | 70956 | 105219 | 134379 |
| 27675 | 75411 | 107163 | 135675 |
| 29403 | 76059 | 107419 | 140211 |
| 33075 | 77571 | 108675 | 140940 |
| 35235 | 81675 | 109907 | 141075 |
| 41067 | 81891 | 110700 | 146043 |
| 46899 | 85995 | 111051 | 148419 |
| 47628 | 87075 | 114075 | 149499 |
| 52731 | 87723 | 115425 | |
| 54675 | 93555 | 116883 | |

A characteristic property of the determinants of exponent 9 given in the above list (with the exception of -3299) is that they possess 13 classes each of which when duplicated produces its own opposite. These may be termed "critical classes."

For the determinant $-D=6075$ they are:

4	1	1519
9	3	676
36	3	169
36	15	175
76	9	81
79	18	81
81	36	91
19	9	324
25	5	244
31	1	196
49	1	124
61	5	100
76	29	91

In the exceptional case, $-D=3299$, there are only 4 critical classes, the single genus it possesses having 81 classes, which tabulate into 9 periods of 9 classes each. All the other members of the list of 58 determinants given above have genera II, IV, VIII, etc.

In an attempt to find a relation between some of these determinants it was found that 25 of them were of the form $-D=6075+5832 p$, viz., 6075, 11097, 17739, 23571, etc. Another series was found to be of the form $27675+27000 p$, giving 27675, 54675, 81675, etc., [5].

In these series, when the critical classes (a, b, c) are arranged so that a is a perfect square, it is found that each member gives the same values of a and b; e.g., in the above example, 6075 , the critical classes can be shown thus:

$-D=6075$				$-D=11907$
a	b	c	c	$-D=17739$
4	1	1519	2977	c
9	3	676	1324	4435
36	3	169	331	1972
36	15	175	337	493
81	9	76	148	499
81	18	79	151	220
81	36	91	for the next two	163
324	9	19	members 11907,	37
324	45	25	17739 the	43
324	63	31	c-values are	49
324	99	49	67	235
324	117	61	79	55
324	153	91	109	61
				67

and for all the others the c-values increase respectively in arithmetical progression.
It is found that the determinants (with the exception of $-D=3299$) can be arranged in 20 series as follows:

Series

Series No.	Morm	Members
1	$6075+5832 p$	$6075,11907,17739,23571,29403$,
		$35235,41067,46899,52731,58563$,
		$64395,70227,76059,81891,87723$,
		$93555,99387,105219,111051$,
		$116883,122715,128547,134379$,
		$140211,146043$.
2	$27675+27000 p$	$27675,54675,81675,108675,135675$.
3	$33075+27000 p$	$33075,60075,87075,114075,141075$.
4	$24300+46656 p$	$24300,70956,117612$.
5	$47628+46656 p$	$47628,94284,140940$.
6	$75411+74088 p$	$75411,149499$.
7	$11907+74088 p$	$11907,85995$.
		$(11907$ also appears in Ser. 1)
8	$33075+74088 p$	$33075,107163$.
		$(33075$ also appears in Ser. 3)

Series No.	Form		Members
9	$132300+74088000 p$	132300	
10	$97200+1728000 p$	97200	
11	$115425+91125 p$	115425	
12	$110700+216000 p$	110700	
13	$101675+343000 p$	101675	
14	$77571+474552 p$	77571	
15	$56403+580093704 p$	56403	
16	$103627+170584511336 p$	103627	
17	$107419+7066834559000 p$	107419	
18	$109907+982107784 p$	109907	
19	$120987+64964808 p$	120987	
20	$148419+35937000 p$	148419.	

In every case the factor of p (i.e., the constant difference) is the cube of the product of the square roots of the a-values of the $1 \mathrm{st}, 2 \mathrm{nd}$, and 5 th classes.

All the critical classes of these determinants have been tested by duplication, and their opposites were obtained in every case.

As a further test with a determinant beyond our assumed limit, we maydake $-D=187596$, the 4 th member of Series 5 , and we have:

$$
-D=187596
$$

a	b	c
9	3	20845
16	2	11725
144	30	1309
144	66	1333
81	9	2317
81	18	2320
81	36	2332
1296	414	277
1296	558	385
1296	18	145
1296	306	217
1296	126	157
1296	450	301

the last six of which reduce to:

277	137	745
385	173	565
145	18	1296
217	89	901
157	31	1201
301	149	697.

Choosing one of these classes, say ($301,149,697$), we can duplicate it by compounding ($301,149,697$) with ($697,-149,301$).

This is done most simply by a method devised by the writer:
Let the classes be (a, b, \cdots) and ($a^{\prime}, b^{\prime}, \cdots$) where a and a^{\prime} are prime to each other, and take p and q such that either $a p$ and $a^{\prime} q$, or $a^{\prime} p$ and $a q$ differ by unity. This can nearly always be done mentally, but when a and a^{\prime} are not small, the values of p and q are more quickly found as the constituents of the penultimate convergent of the continued fraction representing a / a^{\prime} or a^{\prime} / a. The required compound class is then given by ($a a^{\prime}, a^{\prime} b p+a b^{\prime} q, \cdots$) or by ($a a^{\prime}, a^{\prime} b q+a b^{\prime} p, \cdots$), care being taken that the signs of p and q are so chosen that the smaller of the two products, e.g., $a q$ and $a^{\prime} p$, say, shall be negative. Applying this to the case in hand, we get:

$$
\begin{aligned}
& (697.301,697.149(-19)+301(-149) 44, \cdots) \text {, } \\
& (209797,-1973207-1973356, \cdots) \\
& (209797,-3946563, \cdots) \\
& (209797,+39580,7468) \\
& (7468,2240,697) \\
& (697,149,301) \\
& (301,-149,697)
\end{aligned}
$$

or
which shows that $(301,149,697)$ is a critical class, and each of the twelve other classes when similarly tested is found to be a critical class.

R. J. Porter

1. G. B. Mathews, Theory of Numbers, Part I, 1892.
2. A. Scholz \& O. Taussky, "Die Hauptideale der kubischen Klassenkörper imaginärquadratischer Zahlkörper: ihre rechnerische Bestimmung und ihr Einfluss auf den Klassenkörperturm," Jahrbuch über die Fortschritte der Mathematik, 60, 1934, p. 126, J. reine angew. Math. 171, 1934, p. 19-41.
3. T. Pepin, Atti. Acad. Pont. Nuovi Lincei, 33, 1881, p. 354-391.
4. C. F. Gauss, Disquisitiones Arithmeticae, Art. 306, VIII, 1801 ; in Werke I, 1863, p. 371 ; German transl. by H. Maser, 1889, p. 653-654.
5. The 11 th member of the second series, i.e. -297675 , has exponent 27 , with 40 critical classes.

TECHNICAL NOTES AND SHORT PAPERS

Selected References on Use of High-Speed Computers for Scientific Computation

The author is often asked to recommend reading to orient mathematicians in the impact of high-speed computers on numerical analysis. The following list was prepared in answer to one such request, but does not pretend to be definitive. The author is indebted to C. B. Tompkins for several suggestions.

For a list of books not necessarily influenced by high-speed computers, but highly pertinent to their use, see G. E. Forsythe, "A numerical analyst's fifteenfoot shelf," MTAC, v. 7, 1953, p. 221-228.

