
TECHNICAL NOTES AND SHORT PAPERS 225

On the Simultaneous Numerical Inversion of a Matrix

and All its Leading Submatrices

This note considers the case in which a square matrix A may be factorized

(1) A = X'DY,

where X and Y are square matrices whose diagonal elements (where i = j) are

unity, and whose subdiagonal elements (where i > j) are zero, whilst D is a

diagonal matrix, that is, one whose off-diagonal elements (where i ?¿ j) are zero

[1]. Where this factorization exists, it is unique [1]. Where it does not exist,

there exists another factorization of the form (1) in which the matrices X and Y

differ from the foregoing specification by having their rows in some way inter-

changed [2].

Let the matrices appearing in relation (1) all be partitioned after the rth row

and column, the resultant leading submatrices of order r by r being denoted by

Ar, X/, Dr, Yr, where r = 1, 2, • • -, n — 1. Then it is easily seen that

AT   =  X/DTYr.

If DT is non-singular, so is Ar, and hence

(2) Ar1 = Yr'DrXr'-K

This holds also for r = n, when suffixes may be omitted. It is, in fact, equiva-

lent to taking r = n and replacing the elements in the last n — r columns and

rows of all matrices by zero. This suggests that if a typical element, say by, of

A~l = B is obtained as the scalar product of the ith row of F_17)_1 and the jtb.

row of X~l, the corresponding element bqw (where i, j ^ r) of AT~l = BT, say, is

obtained as the rth partial sum of the n products of the row-by-row multiplication.

Thus, with a desk calculating machine, on which products can be accumulated,

the inverses Bi, B2, • ■ •, of A\, A2, ■ ■ ■ are obtained simply as the partial sums

of the row-by-row multiplications needed anyhow for the computation of the

inverse B of A.

As the factorization is unique any process yielding X', D, and F (or F-17J>-1

and X'^1, etc.) may be used. The following arithmetic check is suggested. Relation

(1) gives
X'~lA = DY.

Comparison of diagonal elements on either side shows that the scalar product

of the rth column of Xr~l into the rth column of Ar is equal to dr, the rth diagonal

element of Dr. This relation may be used to check each column of X~l fresh after

computation. Similarly it is found that the scalar product of the rth column of

Yr~l into the rth row of AT is also equal to dr.
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A Note on Large Linear Systems

Towards the end of 1955 the author of the present note was charged by

Svenska Aeroplan Aktiebolaget (SAAB Aircraft Company), with setting up a

program for the automatic computer BESK for the solution of large symmetric

systems of linear algebraic equations. The reason was that the solution of 4

systems with 214 unknowns was required. The systems had been set up in con-

junction with certain calculations for airplane structural analysis. Approximately

40% of the coefficients in the matrices of these systems differed from zero. This

fact was taken into account in setting up the program. Nevertheless, the whole

system could not be accommodated at one time in the magnetic drum memory of

8192 words associated with BESK, and a splicing method was developed which

does not involve excessive loss of time in connection with the input and output of

intermediate results. The four systems were solved simultaneously by the BESK.

The method used for solving the equations was Gauss' method of elimination.

The calculating time was about 2 hours. If p% of the coefficients of the systems

differ from zero, and the order of the systems is n, the calculating time will be

proportional to p2n3.

By formation of residuals and one iteration a solution was obtained which,

when inserted into the original systems, proved to satisfy the equations with

deviations less than 10_6%, i.e., if the computed solution was x¡ and the system

was AX = B, the "error vector" £ = zZ &ißi — ¿>¿ satisfied |£| < 10-8\B\. The
i

systems were badly conditioned since, if the matrix was  iaik), the "condition

number" was:

R(A) =
| determinant (aik) |

214     , 214 IT

n ( e w\ )
k=i \¿=i     /

= 2-8

The matrix is therefore comparable with the n X n matrix

An =

5-4        1
-4        6-4        1

1-4        6-4        1
1-4        6-4        1

-4

1
6    -4
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