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Thus we have half of seven 8X8 squares. In projective terms we have a

total of 45 lines with 9 points on a line which are consistent with themselves but

which cannot be completed to the 73 lines of a projective plane.
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On the Location of Gauss Sums

We shall understand by a generalized Gauss sum of order k the sum

p-i
Sk = Y, exp (2irimk/p),    (p = kf + 1, a prime).

m=0

This sum can be thought of as the principal root z0 of the reduced period equation

of degree k for the so-called /-nomial periods, z¿ = kru + 1, where, as usual,

/-i
Vi = E exp (2wigk'+i/p)     ii = 0, 1, • • -, k - 1).

>•=o

Since the remaining k — 1 roots of the period equation depend on the primitive

root g, the singling out of one root Zo as the principal root is justifiable.

For k m 2, it is well known that [1]

4p    if p = 4re + 1
(1) 5* -     • rr   -ri^p    if p = 4w - 1.
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In general it is known that

- (k - i)V¿ < sk < (k - \)4p.

For k = 3, and Ap = L2 + 27M2, the three roots of the reduced trinomial cubic

F(z) = z3 - 3pz - pL = 0    (L = 1 (mod 3))

lie in the intervals

i-2jp,-Jp),    i-Jp,Jp),    i^,2Jp).

Kummer [2] noticed that the principal root z0 lies in these intervals with

frequencies approximately of 1 to 2 to 3 for primes less than 500 and conjectured

that these ratios hold in general. Further calculations by Goldstine and von

Neumann [3] for primes up to 10,000 exhibited ratios of the order of 2 to 3 to 4.

They conclude that "these results would seem to indicate a significant departure

from the conjectured densities and a trend toward randomness." On the other

hand a case has been made by G. Beyer [4] that these are indeed the true ratios

since 2 + 3 + 4 = 32, and since these densities hold for composite as well as

prime moduli. It therefore seemed of interest to continue this investigation on

the SWAC at the Numerical Analysis Research of the University of California

at Los Angeles. The results of Goldstine and von Neumann covering the first

611 primes were extended to the first 1000 primes of the form 6« + 1, with the

result that the ratios have now become of the order of 3 to 4 to 5, thus continuing

the trend away from the conjecture and towards equal distribution noted by

Goldstine and von Neumann. The actual figures will be given below.

Before doing this we would like to suggest another division of the primes of

the form on + 1 into three classes with respect to the absolute value of S3. Since

Fii-^Jp) = F3(V3^) = -pL,

there is always one root of F3 = 0 which is greater than V3p in absolute value,

and we already know that there is a root of F3 = 0 which is less than -/p in abso-

lute value. Therefore the absolute value of S3 lies in one of the three intervals

(0, V£),     «P, <Sp),    (V3p, 2Jp).

We have actually counted the number of times that the principal root lies in

these intervals using the tables of Goldstine and von Neumann and our own

tabulation from the SWAC for primes above 10,000. We find that the number of

primes in these three categories is approximately the same over the whole range

covered. It is hoped that these figures will encourage some characterization of

these classes of primes, which escapes the writer. The actual figures follow, where

the primes are divided into 10 groups of 100 primes each.
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Table 1. Number of primes p = 1 (mod 6) such that

Group    S3<-Ap    -Jp <Si<y[p    S3>Vp    |S3|<\£    yfp < 15, | < V3p    |5,|>V37

I 18 28 54 28 36 36
II 21 38 41 38 35 27

III 21 33 46 33 34 33
IV 29 32 39 32 32 36
V 28 29 43 29 35 36

VI 18 38 44 38 26 36
VII 34 26 40 26 31 43

VIII 24 32 44 32 41 27
IX 29 34 37 34 35 31
X 19 31 50 31 38 31

Total        241 321 438 321 343 336

A similar problem has been raised in the quartic case for the sum

p-i
Si = Y, exp (2wimi/p)

m=0

by Hasse [5] in the closing pages of his book on the theory of numbers. The

discussion of the problem, as given there, depends on much of what is in the book

and an elementary treatment of it might be in order together with additional

numerical evidence.

It was already known to Lebesgue [6] that Si, as well as the companion sum

p-i
St  = £ exp (2irirmi/p),

where r is any quadratic, but not quartic, residue of p, satisfies the quartic

equation

(2) [z2 + (1 - i-l)<*-»i*2)pj* - 4p(z - a)2 = 0,

where p = a2 + 4b2 and p = a = 1 (mod 4).

We can write (2) in factored form as follows

(3) [z2 - 24pz + (1 - i-iy-vityp + 2V^a]

X [z2 + 2jpz + (1 - i-l)<r-»i*2)p - 2V¿a] = 0.

Since by definition of S2, Si and S/ and by (1)

St + S/ = 2Si = 2Jp,

it follows that Si and S/ are roots of the first factor of (3) and hence

(4) Si, S/ = p ± V2V(-1)Cp-i)/4¿> - Jpa.

We consider with Hasse the location of

iS - S4O/4 = Wü» - <pa)/2    for p = 8w + 1,    e = ± 1|      iS - S/)/4 = e^ip - Apa)/2    for p = 8w + 1,

' \(S- S/)/(U) = eV(/> + <pa)/2    for p = 8« + 5, ± 1.
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Besides the obvious ambiguity in the sign of e, the sign of a is "known" only

by reference to a table of quadratic partitions [7].

Hasse divides all primes of the form 4« + 1 into four categories as follows :

Pi =

Pi =

8m + 1

8n + 5

8« + 1

8« + 5

8» + 1

8« + 5

8« + 1

8« + 5

for

for

for

for

V2p/2 < A < V?

0 < A < V27/2

-V2£/2 < A < 0

•\2£/2 < A < V^

-4p < A < -V2£/2

-j2~p/2 < A < 0

0 < A < V2p/2

- V^ < A < - V27/2

(e =  +1, |c

(e = +1, |a

(e =  -1, \a

it = +1, \a

(e = — 1, I a

(s = -1, |a

(« = +1, |a

(« = -1- |o

= -1 (mod 4))

be -1 (mod 4))

= +1 (mod 4))

= +1 (mod 4))

■ -1 (mod 4))

■> -1 (mod 4))

■ +1 (mod 4))

= +1 (mod 4)).

These intervals become meaningful if one thinks of them as the projections

on the x and y axis respectively of the first, third, fifth and seventh octants of

the circle of radius -/p. Hasse (there are two errors in Hasse's table, which he

attributes to Kaluza. The primes 677 and 877 belong to class p? and not ps, giving

ratios 21:21:12:26 instead of 21:23:12:24) found that for primes less than 1000

the four types of primes appear with frequencies which are approximately 2:2:1:2

for the primes of the form 8« + 1 as well as for primes of the form 8« + 5. He

conjectured that there are infinitely many primes in each class and that the

frequencies for primes of the forms 8w + 1 are the same as for the primes of the

form 8« + 5.

Another, possibly more simple-minded, way of dividing these primes into four

categories would be by grouping together all primes, irrespective of their form

modulo 8 for which A lies in a given interval as follows :

(6)

po for which

pi for which

pi for which

pi lor which

■ Jp < A < - V2p/2

• \f2p/2 < A < 0

0 < A < V2^/2

VW2 < A < V/>

(«- -1, M
(«- -1. |o|

(«= +1, \a\

(e= +1, \a\

-(-l)ù-i>/« (mod 4))

(-l)(j-"/«(mod4))

(_1)(p-l)/4(mod4))

_(_l)(P-i)/4(mod4))_

If we now denote by wkix) the number of primes in the class pk not exceeding x,

then obviously

■fiix) + irtix) = aiix), the number of primes < x for which \a\

mix) + Tiix) = a3ix), the number of primes < x for which \a\

ifo(x) + to(x) = ao(«), the number of primes < x for which \a\

tti(x) + Tt(x) = a2(x), the number of primes < x for which \a\

-1 (mod 4)

+ 1 (mod 4)

_ (_l)(p-l)/4

(mod 4)

(_l)(p-l)/4

(mod 4).
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It has been shown by Lindau [8] that the Gaussian primes of the form a -\-bi,

when divided into residue classes with respect to any modulus are asymptotically

equally distributed. The Gaussian primes can be divided into two classes modulo

4, according as \a\= +1, or —1 (mod 4), a = 1 (mod 4), or according as

\a\= db(—l)(p_l)/4 (mod 4). It therefore follows that

lim a3(x)/ai(x) = lim a2ix)/aoix) = 1.
X—km of—>a>

Since the ratios observed by Hasse at x = 1000 give

ai(1000)/a,(1000) = 3/4,

they cannot be the limiting ratios.

It should also be noted that by (6), an gives the number of primes x, lor

which |A|> 42p/2, while a2ix) counts those for which |A| < */2p/2; there-

fore | A [ is in the limit equally likely to be in the two intervals (0, -/2p/2) and

(V2¿>/2, Jp). This could possibly be used to support the conjecture that the

absolute value of S3 is also equally divided between three intervals in the limit.

However, the consideration of the Eisenstein primes of the form a + bco modulo

three does not seem to shed any light on the cubic problem any more than the

consideration of the Gaussian primes modulo four helps us to find the limiting

densities over the four intervals as taken by Hasse or as given in (6). We have

therefore turned to the SWAC once more in order to calculate A for all primes

of the form 4w + 1 less than 10,000.

The time required by the SWAC for all 2549 primes for which A was calcu-

lated was about eight hours. Towards the end of the run, for primes in the neigh-

borhood of 10,000 it took almost a minute per prime, but considering that there

were about 5000 sines or cosines to compute and add, not to speak of the calcula-

tion of the appropriate arguments, the time does not seem excessive. Also the

accuracy of about 6 decimal places in cases which were computed by hand by (4)

seemed very gratifying.

The results are as follows :

Table 2

x mix)      7t3(x)      ir6(x)      mix)

1000 21 21 12 26
2000 42 34 27 44
3000 54 55 43 59
4000 77 68 49 75
5000 87 86 60 96
6000 105 99 71 108
7000 125 116 79 122
8000 145 126 93 135
9000 163 136 102 153

10000 179 151 113 166

TToix) 7T2(x) 7T4(x) Voix)

17 15 25 23
23 26 47 41
46 46 62 57
54 55 84 76
67 74 98 90
78 84 112 109
86 94 134 128

101 106 151 141
116 114 163 161
125 131 176 177

These results do not change appreciably the picture obtained for primes less than

one thousand. The frequency 7r6 is still consistently low, but Hasse's ratios of
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2:2:1:2 now look more like 3:3:2:3, giving the ratio of 5/6 for ai(x)/a3(x) for

x = 10,000, instead of 3/4 at x = 1000, which is in line with the fact that this

ratio tends to unity. The figures also seem to indicate that 7ro(x) and x2(x) are

very close. The same can be said of ^(x) and 7r6(x) giving ao/a2 very close to

one all along the line.

The next case, S¡, has not been studied in detail before, although the quintic

period equation which it satisfies is known [9] (There is a misprint in equation

(10) of [9]. A correct expression is (8) of the present paper.) in terms of the

following quadratic partitions :

(7)

and is as follows :

Í6p = x2 + 50m2 + 50k2 + 125w2

Auv,    p = x = 1 (mod 5)

(8)    Fiiz) = z6 - Wpz* - 5pxz2 + 5plp - (x2 - 125w2)/4]z

+ p2x - p[_x3 + 625 (u2 - v2)w~]/% = 0.

The roots of this equation lie between — 4Vp and 4Vp, but when divided by \[p

they no longer lie one each in any five fixed intervals. However, we can show by

straightforward algebra that there always is a root z such that \z\ > -/5p, and

that there are one, two, or three roots in the middle interval |z| < y¡p. Figures

obtained for the five roots of (8) for primes less than 10,000 on the SWAC show

that all of these cases do arise and that for approximately half the primes there

are two roots in the middle interval, while for about a quarter of the primes there

are one or three roots in the middle interval. The majority of cases with one root

in the middle has one root in each interval, but there are exceptions. Nevertheless,

the frequency of |5g| in these three intervals is surprisingly uniform, namely

P <
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

Table 3

\Sb\<4p 4p <\St\ < V5p 4Sp <\St\ <iy[p Total
15 10 15 40
30 19 24 73
37 33 33 103
46 43 45 134
55 50 58 163
67 60 67 194
76 71 79 226
84 76 86 246
91 88 94 273

108 97 101 306

These figures seem to be in line with the conjecture that \Ss\ is equally likely

to lie in any one of the three intervals

(o, tIp),   (Vp, Vsp),   (Vs/>, 4VP).



200 ON THE LOCATION OF GAUSS SUMS

The distribution of 56 itself over the corresponding 5 intervals gives at 10,000

the following numbers from left to right

33, 34, 108, 63, 68

with ratios of the order of 1:1:3:2:2.

Another possible division into intervals is provided by the scaled projections

of the fifth roots of unity on the x-axis. This gives ± (1 ± V5) for division points.

For p = 10,000 the distribution from left to right over the five intervals is

12, 51, 122, 97, 24

or ratios of the order of 1:4:10:8:2. Although the sum of these figures is tempt-

ingly 25, our experience with the cubic and quartic cases does not permit us to

indulge in the hypothesis that these are indeed the limiting ratios. It is also hard

to see how to interpret these figures as a generalization of Rummer's conjecture.

We have pursued a step further the conjecture about the equal distribution

of | Sk | for odd k in the intervals

(o, <p),   (4p, jkp),   «kp, (k - i)Vp)

by calculating on the SWAC the values of S7 lor p = 7n + 1 < 5000 with the

following results :

Table 4

p< |57|<Vp     4p <\Si\< J7p    -/7p <\S1\<6^p        Total

1000 6 11 10 27
2000 10 21 13 44
3000 16 32 21 69
4000 23 38 27 88
5000 33 43 32 108

These figures are not quite as convincing as those for the quintic, but since

nothing is known about the distribution of the roots of the seventh degree period

equation or about the form of the equation itself it is hoped that the actual tabu-

lation of the roots as given by the SWAC will be of some use.

The actual values of these roots together with those of the quintic and the

principal root of the cubic equation will be deposited in the UMT File of MTAC.

We wish to express our thanks to the Numerical Analysis Research Group of

the University of California at Los Angeles for the use of the SWAC and in

particular to Ruth Horgan and John Selfridge for checking out the various codes

and operating the machine.

The code itself is diagrammed below. It presented no special difficulties and

was put together from a standard cosine subroutine (a five term approximation

of the 9th degree), which is used on the SWAC and fundamental number-theoretic

subroutines, which will be described elsewhere.
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Program for the calculation of Sk = 2 exp (2irimk) /p

1.

2.

3.

h.

5.

6,

7.

S.

9.

Input last prime p - kn + 1

p + n

Is p a prime?

Yes No

Find 1/p

31
Find ra   = 9 (mod p)

Find cos 2-If© /p

Accumulate 2P~,  cos 2 -If 9 /p
m=± m

m + 1

Ism <   p?

Yes No

13.

10.

ii.

12.

Is S11  <   p?

Yes No

-P

Does S    check?
_n

Yes No

Stop

Output ±p, S

Box 3 uses the trial divisor test for primality.

Box 5 uses a standard reduction modulo p.

Box 6 uses the cosine subroutine.

Box 11 provides an indication on the size of the sum for output.

Box 12 consisted of either substituting the principal root into the equation,

or adding all the roots to zero, in case all were computed. In a few cases, where

the check failed, the calculation was repeated.
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For roots other than the principal root the program was modified by replacing

mk (mod p) by p"mk (mod p), (v = 1,2, ■ ■ ■, k — 1), where p is a primitive root

of p. In this case the primitive roots subroutine was incorporated into the routine

and the k sums were computed abreast and added in 12 as a check.

Emma Lehmer
Berkeley, California
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A Method for Computing Certain
Inverse Functions

A method will be demonstrated for computing the inverse of certain functions.

The method is applicable to the computation of logarithms and inverse trigo-

nometric functions. It makes use of the binary expansion of real numbers and is,

therefore, particularly suitable for use in automatic digital computing machines

which use the binary number system. It is not recommended for hand computing.

1. The Method. Let/(x) be a function which satisfies the following conditions,

(i) f(x) is continuous and monotone on an interval (0, a~\

(including a, but not including 0),

(ii) f(a/2) is known,

(iii) /(2x) and /(2x — a) can be computed when f(x) is known.

(0, a~\ is taken to mean [a, 0) if a is negative. Also, the symbol (/(0), /(a)]

will   be   taken   to   mean   (/(0, +), /(a)]   (/(O, -), /(a)],   L/(a),/(0,+))   or

\J(a), /(0, — )), whichever is appropriate.

Examples are :

(a) fix) = 2- a = -1

fi2x) = (/(x))2              /(2x + l) = 2(/(x))2

(b) f(x) = cos x a = it

f(2x) = 2(/(x))2 - 1    /(2x - x) = 1 - 2(/(x))2

Let y e (/(0), /(a)], and let it be required to compute f_1(y), that is, to find x

such that f(x) = y. The existence and uniqueness of such an x in (0, a] are

guaranteed by condition (i). Let w = x/a. Then w is in the interval (0, 1]. It


