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Everett's Formula for Bivariate Interpolation and

Throwback of Fourth Differences

It is well known [1], [2], [6], [7], [8], [9], that it is possible in the case of

univariate tables for use with Everett's formula, to eliminate columns of higher

order differences with practically no loss of accuracy by modification of one or

more lower order differences through a process known as throwback. That the

same thing is possible with bivariate tables (and, presumably, with other multi-

variate tables) seems not to have been recorded in print.

Everett's formula for bivariate interpolation, as far as fourth order differences,

can be written as follows, using symbolism similar to that of [2] (see also [3],

p. 8-9 and [4], p. viii-xiv).

(1)      up,P' = m(x0 + ph, y0 + p'k)

= qq'uo, o + qp'uo. i + pq'ui, 0 + pp'ui, i

- E2(q){q'5x2Uo,o + p'ôx2u0,i] - £2(p)|îV«U + p'S.Hii.i]

- E2iq'){qo2Uo.o + />V»i.o}  ~ Et(p') {q8v2u0. i + pov2Ui,i]

+ Eiiq){q'5x*u0,o + p'5x'u0,i] + £4(j>) |?V«i,o + />V«ul

+ Eiiq'){qdv*Uo.o + p5/u!,o\ + £4 ip'){q V«o.i + p5/ui,i}

+ Eiiq)Eiiq')bx\2Uo,o + E2iq)E2ip')8x2ôy2Uo,i

+ E2ip)E2iq')o2oy2Ui,o + Eiip)Eiip')o2o2Ui,i

where

and where

and

p + q = 1    and    p' + q' = 1

We write the above as follows :

(2)    up,„. = qq'uo.o + qp'uo.i + pq'ui,0 + pp'uul

- Eiiq)q'[52Uo.o - cS^Mo.o - dôx2ôy2u0.o]

— £2(ff')?CVMo.(i ~ c'ô/uo.a - d'bz2by2Uo,o~]

— Eiiq)p'[ßx2Un,i - cbjua, i - dhz2&v2Uo. i]

— E2ip')q[ßu2Uo. i — c'V"o, i — d'dx\2iio. i]

- i^G^ç'lJ^i.o - côSui,o - dôz%2Ui,o]

— E2iq')p[ßy2Ui,o — cV«i,o — d'bx2hv2Ui,o~]

- E2ip)p'lb2ui.i - côjui.i - dí»V«i.i]

- Eiip')p[ßyhtx,i - cV«i.i - ¿V^u] + ^,
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where c, c', d, and d' are constants to be selected so that \R\ is "small" for all

p, p' on ranges 0 < p < 1, 0 < p' < 1, and where

(3) R = lEiiq) - cE2iq)~\q'bxiUo.o + [£«(g') - c'£2(g')]<zVwo,o

+ £2(a)[£2(o') - dq' - d'q~]8x28y2Uo,o

+ lEiiq) - cE2iq)~\p'8/uo.i + [£4(/>') - c'£2(í')M4«o,i

+ Eiiq)\_Eiip') - dp' - d'q~]8x%2Uo,i

+ [£«(£) - c£2(p)]?V«i.o + LEiiq') - c'£2(a')>V«i.o

+ £2(£)[£2(g') - dq' - d'p~]828y2Ui,o

+ \_Eiip) - c£20)>X%i.i + [£4(£') - c'E2ip')-]p8/ui,i

+ E2ip)\_E2ip') - dp' - d'p~\8282ui.i.

In equation (2) above, it is implied that the entire term in (1) involving 8xiui,j

is to be thrown back onto 8x2Ui,¡, and that the entire term in (1) involving 5/w,-,,- is

to be thrown back onto 8y2Ui,¡, while the single term in (1) involving 828y2Ui,j may

be thrown back onto both 8x2Ui,j and 8y2Uij. Let us define Rx as that part of R

involving S^Uij, Ry as that part of R involving 8/uíj, and Rxy as that part involv-

ing 8x\2Ui, j. Thus

(4) R = Rx + Ry + Rxy.

Since 5x4tt,-,j, 8/uij and 828y2uitj are essentially independent of each other, it

seems natural to select c and c' so that \RX\ and |2?„| are small, and take care of

Rxy later. This has the further advantage that it will take care of the special case

where 828y2u is zero or nearly so. We do this by the method of [1] and [2]. In

[2] it is shown (in effect) that if c = c0 = (3 + V2)/24 « 0.1839256, then the
absolute value of

(5) R' = \_Eiip) - cE2ip)-]8*Ui + lEiiq) - c£2(g)]ô4Mo

is less than L/2000 provided |54m| < L and |55m| < 0.07Z. In equation (3) we

have four groups of terms, two each in Rx and Ry, which resemble R'. For example,

Rx can be written as

(6) Rx = q'{lEiiq) - cE2iq)l8x*u0,o + lEiip) - c£2(/>)]5z4"i,o}
+ p'HEiiq) - cE2iq)l8x*Uo,i + [£«0») - cE.ip^bJui.i}.

The terms in braces are precisely analogous to the univariate expression R'.

Thus, if we select c = Co, it follows immediately (since g' + p' = 1) that

(7) |£x|<L/2000    provided    \8x*u\ < L   and    \8x6u\ < 0.07L.

If we also select c' = c0, we get, in a similar fashion

(8) |i?¡,| < M/2000    provided    |5„4«| < M   and    |5„6it| < 0.07M.

Now Rxy consists of four terms, of which a typical one is

(9) <biq, q')828y2Uo.o,
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where

4>iq,q') = £,(g)[£,(g') -dg'-d'g].

The natural method of attack on the problem of minimizing the maximum

absolute contribution of Rxy is to proceed in a manner similar to that of [2], viz.,

to write 8x28y2Ui,i — 828yUi,o + 8x28y3ui:i, i = 0, 1. After these substitutions we

can write Rxy as follows :

(10) Rxy = G8x28y2uo,o + H828y2Ui,o + A828yHio,h + B828y*ui,h

where

A m E2iq)lE2ip') - dp' - d'q],

B = E2iP)lE2ip') - dp1 - d'pl

G = Eiiq)lEiiq') + E2ip') -d- 2d'g],

H = E2ip)lE2iq') + £,(/>') - d - 2d'p],

If we replace 8x2Sy2Ui,o by 5x2ö„!Wo,o + 8z8y2u^0 we can write above equation as

(11) Rxy = G*8282Uo.o + H838y2uh,o + i4a,V«o.» + B828vHi,h

where

G* = G + H = [£,(g') + £2(/>') - ¿][£i(g) + E,(p)2

- 2d'lqEiiq) + pEtifi)].

We assume, for the moment, that the three terms in (11) involving fifth order

mixed differences are "small" in comparison with the fourth order term; we

examine the problem of selecting d and d' so as to minimize the maximum abso-

lute deviation from zero of the fourth order term in the region D: 0 < p < 1,

0 <p' < 1.
Note that G*ip, p') is symmetric with respect to p = 1/2 and with respect to

p' = 1/2. Therefore, we may restrict attention to the region D* : 0 < p < 1/2,

0 < p' < 1/2.
Evidently we may assume both d > 0 and d' > 0, since any positive extremum

of G* I or d < 0 could be made smaller by taking d > 0 ; the same is true of any

positive extremum for d' < 0.

We have

dG*/dp = (1 - 2p)\lEiip') + £2(g') - d]/2 - 2d'[2£2 - 2p + l]/3)

= -4d'(l - 2p)ip - pi)ip - p2)/3

where _ _

Pi = 1/2 - Vg - 1/4,    p2 = 1/2 + Vg - 1/4,

g = ¿7 LEW) + EiiP') - d].

Also,
dG*/ap' = (1 - 2p')lEi(p) + £2(g)]/2.
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The extrema of G* either lie on the boundary of D* or satisfy the conditions

dG*/dp = dG*/dp' = 0. The latter conditions imply that

(a)    p = 1/2,    pi or p2

and

(b)    p' = 1/2    or    p = 0.

Since G*(0, p') = 0, the only non-zero extrema of G* occur on one of the other

three boundaries of D*.

Along p' — 0, g — — 3d/8d' < 0; hence both pi and pi are imaginary here,

and therefore dG*/dp < 0 on 0 < p < 1/2, = 0 at p = 1/2. Thus, G*(l/2, 0)
= — (d + d')/8 < 0 is the minimum value of G* on boundary p' = 0 of D*.

Obviously, dG*/dp' > 0 on the interior of D* and along p = 1/2, and

dG*/dp' = 0 in D* only along p = 0 and p' = 1/2. Hence, we can infer that

G*(l/2, 0) is the absolute minimum of G* in D* and the only possible maximum

is along p' — 1/2. We therefore next investigate G* along p' = 1/2.

Along p' = 1/2, g = 3(1/8 - d)/8d' and g - 1/4 = (3 - 24d - 16d')/64d'.
It can be shown, by examination of dG*/dp, that

a. if 3 - 24d - 16d' < 0, G*(l/2, 1/2)  is a  (negative)  minimum and the

absolute maximum of G* on D* is therefore 0.

b. if 3 - 24d - 16d' > 0,
and (1) 3 - 24d - 32d' < 0, G*(l/2, 1/2) is a maximum, absolute if

positive,

and (2) 3 - 24d - 32d' > 0, G*(l/2, 1/2) > 0 and the absolute maxi-
mum of G* on D*.

In all cases, G*(l/2, 1/2) = 1/64 - (d + d')/8.
Since we wish to minimize the maximum absolute deviation of G* from 0, since

G*(l/2, 1/2) - G*(l/2, 0) = 1/64, and since both G*(l/2, 1/2) and G*(l/2, 0)
are monotonie increasing functions of (d + d'), we can evidently solve this

minimax problem by making G*(l/2, 1/2) > 0 and = | G* (1/2, 0) |. From this it

follows that d + d' = 1/16 and maximum absolute deviation of G* from 0 is

1/128. Note that the condition d -\- d' = 1/16 is consistent with case (b) (2) above.

Having determined that we should select d + d' = 1/16, whence \G*\ < 1/128,

we now consider the selection of d (and of d' = 1/16 — d) and its effect on fifth

order terms in Rxy.

An investigation of the coefficients A, B, and H of the fifth order terms in

Rxy by methods similar to the investigation of G* shows that (when d' = 1/16 — d)

(1) Maximum  \H\ is a monotonie decreasing function of d, 0 < d < 1/16.

(2) Maximum \A\ and maximum \B\ are monotonie increasing functions of

d on above range, and have same values, although attained for different

values of ip, p').

Thus, if 18x%2u | < N, we can say that

(12)     |£„,| < N/Í28 + max \H\ max \8x38y2u\ + 2 max \A | max \8x28y3u\.
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Unless we make some assumption about the relative magnitudes of 8x38y2u and

828x3u, there is no rational basis for selection of the value of d other than a selection

based on the fact that max\H\ is monotonie increasing and max|^4 | is monotonie

decreasing. For example, if we assume that max 1838y2u | = 2 max|5x2VMl — P,

then we would be confronted with a problem of minimizing P[max|i7| + max|i4|].

If this were the case, it turns out we should choose d close to 1/32 (midpoint of

interval 0 < d < 1/16) to minimize [max|i7| + max|^4|]. Since this choice at

least has the virtue of symmetry (if d = 1/32, then d' = 1/32), we make it.

With the above choice, we find that

max | if | < 0.00451

and

max \A | < 0.00323.

However, maxima above are attained for different ip, p') from the pairs for

which |G*| has its maximum, viz., (1/2, 1/2) and (1/2, 0). The maximum values

of \H\ and |^4 | for these pairs of arguments are respectively 1/256 « .00391

and 1/512 « .00195.
In order to determine a reasonable set of restrictions on |5x35„2m| and \8x28y3u\,

we remember that we already have assumed the fifth order terms "small" in

comparison with the fourth order term whose maximum absolute value is N/Í28.

If, e.g., N < 60 so that A7/128 < .46875, and this term constitutes most of |i?x»|,

then in (12) we may allow max 18x38y2u | = max 18x28y3u \ < 4 and have | Rxy \ < 1/2.

Thus, if |SxV«l < A7 and |â„V«|, \828y3u\ < N/15, then |i?x„| < N/120.
Obviously, other sets of restrictions are possible; e.g., we might allow the two

fifth order differences different maxima, or we might allow them to be larger

fractions of total | Rxy \. A similar result would be : if 1828y2u \ < N and 1838y2u \,

\828y3u\ < .28A7, then \Rxy\< iV/100.
However, it seems natural to select a restriction set corresponding roughly to

that chosen for |5x4«| and  |Sx6«| in [2], viz., L and 0.07Z- (thus, 1/15 ~ 0.07).

In summary, then, we can say that with the choice c = c' = c0 and d = d'

= 1/32 for the "throwback" constants,

(13) \R\<L/2000 + M/2000 + N/\20

provided

\8x4u\<L, |5z6m| < 0.07Z,

\8/u\<M,        |V«I< 0.07M,
I SxV" I < N,     1828y3u | < N/15,

and

\8x38y2u\< N/15.

In some instances, it may be desirable to have available the general result

corresponding to (13), which does not necessarily assume that the fifth order

differences are "small" with respect to the fourth order terms.

In order to see how we get such a result, consider, as in [2], that we have

written equation (5) as follows :

(50 R' = GS4Mc 4- lEiip) - cE2ip)286Ui
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where

G = pip2 - \)ip - 2)/24 + cpip - l)/2.

With the choice c = c0 (which minimizes maximum |G|), we find that

|G| < .000447 and |£4(£) - cE2ip)\ < .000792. Consequently, if |54w0| = 1000

and |S6M}| < 70, we would have \R'\ < .503, which is approximately 1/2. Indeed,

if we make use of the fact that max | G | and max | £4(J>) — cE2{p) | occur for differ-

ent values of p, and that at p = .88265, \G\ = max, whereas |£4(£) — cE2ip)\

« .000744 instead of .000792, we find that, probably, |£'| < -499- From this
arbitrary selection of max \8*u\ = 1000 comes, then, the result stated in connection

with equation (5). Evidently, the corresponding general (and conservative) result

is that if \8*u\< L and |ô5w| < KL, then

(5") |£'|< ¿(-000447 + .O0O792Ä").

Obviously, this implies that

(7')     |i?x| < £(.000447 + .000792#i)    if    \8Su\KL   and    \8z*u\<KiL.

Similarly, we have

(8')     |£x|< M(.0OO447 + .000792í:2)    if    |5>l<-^   and    \8y*u\ < K2M.

(In the above, the only restrictions on the K{ are that they be >0.)

From the discussion in connection with equation (12) above, we see that

we have

(120 \R*»\ < #[1/128 + .00451^32 + .00646X23]

if
18x28y2u | < N,    18x%2u | < K32N,

and

|5xV«l<^23A7,

where, again, the only condition on the Ki, is that they be positive.

Consequently, we have the following general result to replace (13) :

(130     \R\< £(.000447 + .000792.fi!) + M(.000447 + .000792i:2)

+ #(1/128 + .00451X32 + .00646X23)

under the hypotheses governing (70, (80, (12').

The advantages of the use of modified second differences as in equation (2)

are obvious—a published table need contain no fourth order differences and

formula (2) requires only 24 multiplications to evaluate 12 terms as opposed to

the 48 multiplications required to evaluate 24 terms in formula (1).

It should be noted that the fraction 1/120 is disappointingly large in com-

parison with 1/2000. However, there really seems to be nothing one can do about

this situation. Even so, we have "gained" in some sense, since the condition for

negligibility of terms involving fourth order (pure and mixed) differences is that

(14)    L/42 + M/42 + Ar/64 < 1/2 (units of last decimal place tabulated)
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whereas the condition for "throwback ability" of the same differences is

(15) L/2000 + AT/2000 + AT/120 < 1/2,

in the presence of auxiliary conditions in (13).

As an example of the use of throwback, we may consider its application to the

tables in [5]. Cursory examination of [5] indicates that in a large proportion of

the table, inequality (15) (or its more general version corresponding to (130) ls

satisfied, so that modified second differences could be made to work. As a specific

illustration, we take the numerical example on p. xxiv-xxv, viz., computation of

7(4.025, 7.05). We use formula (2) as modified by introduction of the throwback

constants c, c', d, d' selected as above, viz.,

(20    uPiV- « gg'wo,o + qp'u0,i + pq'uh0 + pp'ui,i

- E2iq)q'Mx2u0,o - E2iq)p'M2Uo.i - E2(p)q'Mx2Ui,o - E2ip)p'Mx2Ui,i

- Eiiq')qMy2Uo,o - E2ip')qMy2u0,i - E2iq')pMy2Ui,0 - E2(p')pM2Ui,i

where M2Ut, ¡ is the modified second difference of u, with respect to the variable z,

evaluated at "point" i, j.

At the point in question, 7(4.0, 7.0) ~ u0.0, 7(4.1, 7.0) ~ U\, o, 7(4.0, 7.2) ~ u0, i,

and 7(4.1, 7.2) ~ tti, i. Thus, the full array of differences for use in the unmodified

formula would be :

Ox2

8* V
5x2V

(0,0)
■17520      -1747

63 0

16

(0,1)
17985      -1745

80 0
17

(1,0) (1,1)
■16319      -1643

30 0
10

16802      -1649
43 0

13

This is replaced by the following set of modified differences :

M2 M2

(0,0)
-17532      -1748

(1.0)
-16325      -1643

(0,1)
-18000      -1746

(1.1)
16810        01649
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Here we have p = 0.25, p' = 0.25. Using (20, together with a table of £2(x),

as in [2], we get 7(4.025, 7.05) « .878, 5410, which agrees with result obtained

by Pearson.

In principle, throwback of other kinds in the bivariate Everett formula is

possible. There is, also, no a priori reason why it could not be accomplished in

the trivariate Everett formula, which is stated in [4], page x.
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TECHNICAL NOTES AND SHORT PAPERS

On the Treatment of Monte Carlo Methods in Text Books

Though Monte Carlo methods have not yet reached the text book stage, they

are gradually being afforded a brief mention in new books on numerical analysis.

This is probably stimulated by a desire for completeness but the brevity of treat-

ment often results in a very narrow picture of Monte Carlo. For any given problem

there may be several methods of solution by Monte Carlo and there are general

principles which should guide one in choosing between these. A description of a

single method, leaving the reader with the impression that this is the sole method,

is therefore a mistake. Care must also be taken to see that, though a method may

be illustrated on a simple example for which Monte Carlo would not normally

be used, it is easily extensible to problems for which Monte Carlo would be needed

and provides a reasonably practical method of solving these.

In two otherwise excellent books by Householder [2] and Kopal [4] a tech-

nique is given for evaluating integrals by Monte Carlo. It is the only example of

Monte Carlo in either book and is rather an unfortunate one ; for it is not easily

applicable in practice to multiple integrals though it is largely for these that

Monte Carlo can be useful; in addition, it is always less efficient, and often much

less so, than another well-known simple technique (defined as crude Monte Carlo

by Hammersley and Morton [1]). Their comparative efficiency is also an ad-

mirable illustration of a general precept to be used when choosing even the

simplest Monte Carlo methods.


