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A Note on Summation Formulas of Powers
of Roots

By Daniel C. Fielder

Introduction. Through application of a method due to Newton [1], it is

possible to find solutions for the sum Sb of the bth powers of the n roots of f(x),

where f(x) is an integral rational function of rath degree in x. As anyone who has

used this method for large n and b can attest, the procedure involves tedious and

repetitive manipulations which increase rapidly in complexity as b is increased.

It is shown herein that it is possible to reduce the labor of finding such algebraic

sums by rejecting redundant information in a general formula for the sums and

using only pertinent terms to predict the numerical and literal coefficients.

Inductive reasoning is employed to arrive at a simplified method.

Conventional means for determining sums. Given the expression

(1) f(x) = aoxn + aixn~l + • • -an-ix + a„,

where f(x) is an integral rational function of nth degree in x, and a0, Ci, etc., are

the coefficients of the powers of x. The sum of the £>th powers of the roots of

f(x) are

(2) 5» - ci» + ci + • • -c¿,

where ci, c2, etc., are the roots of f(x). Newton's method makes use of the follow-

ing tabulation to find Sb-

lai + Siao = 0

2ö2 + Siai + -S^ao = 0

(3) 3a3 + Sia2 + ^ai + S3O0 = 0

For the case of n = b, to get Sn it is necessary to go through n operations, each

successive one becoming increasingly involved. The only respite occurs if one is

able to find a table of Sn's of desired scope. Unfortunately, available tables seem

to end with the fourth or fifth summation. A typical listing of sums and a summary

of Newton's method is given by Adams [1].

Development of a summation formula. A general summation formula is now

presented. While in the interests of simplicity it is not desirable to use this formula

directly to calculate Sn, it is found that a limited number of terms of this formula

for a particular Sn can be exploited advantageously to yield complete information
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about the 5„. By induction, it can be shown

1 1     ["«  n—1

S»=-(«o.) + —:    - £ iaAan-A)
flo ao  L 2 A_j J
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flo"     L « z-1 r_!   x-i_-«

(w — l)£'s » literal terms

One needs only to consider Sn for n equal to 11 or 12, for example, to note that

the use of equation (4) results in summations of many repetitive combinations of

a's. However, it can be seen that Sn is an «th order integral symmetric function

[2] in oi, a2, etc., with the weight of the symmetric function necessarily equal

to n. For example, if n were nine, one of the literal terms of the coefficients of

— 1/ao6 in equation (4) would be a\2a22azl. The weight is the sum of the products

of corresponding subscripts and exponents. In this case, it is 1X2 + 2X2

+ 3X1 = 9. A second necessary condition is that the degree of the product of

the a's (exclusive of a0) must equal the power of the corresponding a0. For example,

02*C31 would not be found in the coefficient of any 1/ao6. Thus, the coefficient of

(— l)*/ao* contains all the combinations of a's (exclusive of a0) which simul-

taneously have weight of n and degree of k.

Development of a practical summation form. To specify completely the coeffi-

cient for each (— l)Vao* of a particular Sn, one must know (a) what the com-

binations of the a's are and (b) what the individual numerical coefficients of the

combinations are. Obviously, equation (4), after required manipulations, yields

the answer. However, if the tedious approach of equation (4) is to be avoided, the

information must be obtained in a somewhat different manner from direct ap-

plication of equation (4).

The answer to (a) above can be found from a slight rearrangement of a table

which Euler first developed in connection with enumeration of partitions. The

table is presented in extended form in Euler's "Introductio," Lib. 1, Chap. XVI,

and is reproduced in Chrystal £3]. The number of literal coefficients for each

(— l)*/ao* is found directly from the rearranged table which is shown herein as

Table 1. A brief explanation of the mechanics of constructing the table is given

at the end of this paper. The literal coefficients are found by systematically setting

down combinations of the a's with weight and degree consistent with n and k

until the number specified by Table 1 is formed. For example, if n = 11 and

k = 3, Table 1 indicates that there are ten literal coefficients.
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The answer to (b) above can be found from a consideration of the exponents

of the a's. In the coefficient of each (— \)k/aok, there always appears the combi-

nation oi*_1a„_i+i which has the numerical coefficient n. The product n X (& — 1) !

X 1 ! divided by the product of the factorials of the exponents of a particular

Table 2. Values of Sn, n = 1(1)11
Si = — ai/ao,

S2 = ai2/a02 — 2a2/a0,

Si = — ai3/a03 + 3aia2/a02 — 3a3/ao,

St = ai4/ao4 — 4ai2a2/a03 + (4aia3 + 2a22)/ao2 — kai/a0,

5b = — ai6/ao6 + 5ai3a2/a04— (5ai2a3 + 5aia22)/a03 + (5aia4 + 5a2a3)/ao2 — 5a6/ao,

Se = Oi6/ao6 — 6ai4a2/a05+(6ai3a3+9ai2a22)/a04— (6ai2a4+12aia2a3+2a23)/ao8

+ (6aia5 + 6a2a4 + 3a32)/a02 — 6a6/a0,

St = - ai7/aa7 + 7a16a2/a06 - (7ai4a3 + 14ai3a22)/a06

+ (7ai3a4+21ai2a2a3 + 7aia23)/ao4 —(7a21a6+14aia2a4+7a22a3+7a1a23)/ao3

+ (7aia6 + 7a2a6 + 7a3a4)/a02 — 7a7/a0,

Ss = ai8/ao8 - 8ai6a2/a07 + (8a!5a3 + 20ai4a22)/a06

— (8ai4a4 + 32ai3a2a3 + 16ai2a32)/ao6

+ (8ai3a6 + 24ai2a2a4 + 12a!2a32 + 24aja22a3 + 2a24)/a04

— (8ai2a6 + 16a!a2a6 + 16aia3a4 + 8a22a4 + 8a2a32)/ao3

+ (8aia7 + 8a2a6 + 8a3a6 + 4a42)/a02 — 8a8/a0,

Sa = - aiVao9 + 9a17a2/a„8 - (9ai6a3 + 27ai6a22)/a07

+ (9ai5a4 + 45ai4a2a3 + 30ai3a23)/a06

— (9ai4a6 + 36ai3a2a4 + 18ai3a32 + 54ai2a22a3 + 9aia24)/a05

+ (9ai3a6 + 27ai2a2a6 + 27ai2a3a4 + 27aia2a32 + 9a23a3)/a04

— (9ai2a7 + 18a!a2a6 + 18aia3a6 + 9aia42 + 9a22a6 + 18a2a3a4 + 3a33)/a03

+ (9aia8 + 9a2a7 + 9a3a6 + 9a4a6)/ao2 — 9a9/a0,

5io = ai10/ao10 - 10a!8a2/a09 + (10ai7a3 + 35a!6a22)/ao8

— (10ai6a4 + 60ai6a2a3 + 50ai4a23)/a07 + (10ai6a6 + 50ai4a2a4

+ 25a!4a32 + lOOoiWas + 25ai2a24)/a06 - (10ai4a6 + 40ai3a2a6

+ 40ai3a3a4 + 60ai2a22a4 + 60ai2a32a2 + 40a23a3a! + 2a26)/a06

+ (10ai3a7 + 30ai2a2a6 + 30ai2a3a6 + 15ai2a42 + 30aia22a6

+ 60aia2a3a4 + 10a23a4 + 15a22a32 + 10aia33)/a04

— (10ai2a8 + 20aia2a7 + 20aia3a6 + 20aia4aB + 20a2a3as

+ 10a2a42 + 10a22a6 + 10a32a4)/a03 + (10aia9 + 10a2a8

+ 10a3a7 + 10a4a6 + 5a62)/ao2 — 10aio/a0,

5n = - ain/öou + llai'as/ao10 - (llai8a3 + 44a!7a22)/ao9

+ (llai7a4 + 77ai6a2a3 + 77ai6a23)/a08 - (llai6a6 + 66ai6a2a4

+ 33alia\ + 165a!4a22a3 + 55a¡3a24)/a07 + (llai8a6 + 55ai4a2a6

+ 55ai4a3a4 + 110ai2a23a3 + HOa^a^ + 110a!3a2a32 + llaia26)/a06

— (llai4a7 + 44ai3a2a6 + 44ai3a3a6 + 22a13ai2 + 66ai2a22a6

+ 132ai2a2a3a4 + 44aia23a4 + 66aia22a32 + lla24a3 + 22ai2a33)/aoi

+ (llai3a8 + 33ai2a2a7 + 33ai2a3a6 + 33a\2aiai + 33a\a22a*

+ 66aia2a3a6 + 33aia2a^ + 33aia32a4 + lla23a6 + 33a22a3a4 + lla33a2)/a04

— (llai2a9 + 22aia2a8 + 22axa%a-i + 22aiaia6 + llaia62 + lla22a7

+ 22a2a3a6 + 22a2a4a5 + lla3a42 + lla32a6)/a03 + (llaiöio + lla2a9

+ lla3a8 + lla4a7 + lla6a6)/ao2 — llan/ao.
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combination of a's yields the numerical coefficient for that combination. For

example, in the summation for Su given in Table 2, 1/ao4 has as the ai*-1a„_*+i

coefficient öi3as which, in turn, has the numerical coefficient 11. The ai2a3at

combination has 2 ! X 1 ! X 1 ! as the product of the factorials of the exponents.

If 11 X 3 ! X 1 ! is divided by 2 ! X 1 ! X 1 !, the result is 33 which is the numerical

coefficient of the a^a^ae combination.

Construction of Table 1. Table 1 shows the number of coefficients of — l/o0

as the extreme right-hand entry corresponding to a given n. The next entry to

the left is the number of coefficients for +l/a02, etc. The pattern for the number

of — l/a0 and + 1/W coefficients is obvious. It should also be noted that entries

to the left of the stepped division remain fixed for n and k. The entries in a column

for k = (n — h), where h = 0, 1, 2, etc., are formed from cumulative sums,

starting from the right, of the entries in the row for n = h. For example,

for n = 6, h = 5, and k = 1, the entry is 1. This entry is equal to the first 1 on

the right in the row for n = 5. For n = 7, h = 5, and k = 2, the entry is 3. This

entry is equal to (1 + 2) which is the sum of the first two right-hand entries of

the row for n = 5. A column is formed in this fashion until the sum of the entries

in the row (in this case, the fifth) is arrived at, after which the entries in the

column remain fixed at this value. The fixed values are those to the left of the

stepped division, as explained above.

Summary. The method of finding Sn may be summarized briefly as follows.

First, obtain the number of coefficients of each (— l)*/ao* from Table 1 or an

extension thereof. Second, by some systematic procedure obtain as many different

combinations of the a's as there are coefficients specified by Table 1, making

certain that the weight of each combination equals n and the degree equals k.

Third, find n X (k — 1) ! divided by the product of the factorials of the exponents

to obtain the numerical value of a combination. A listing of Sn from » = 1 to

n = 11 is given in Table 2.
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An Alternating Direction Method for Solving
The Biharmonic Equation

By S. D. Conte and R. T. Dames

1. Introduction. The biharmonic operator, defined by

¿>4 d4 d4
AA =-h 2-,

dx* dx2dy2      6Y

plays a role in the classical theory of plates similar to that of the Laplace operator

in potential theory. In particular, the biharmonic equation, AAW = 0, together

Received 4 October 1957.


