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Table of Factors of 2* —

9109
49 55297

9221
7 19239

9343
1 49489

9421
85 73111

9511
95111

9791
19583

9883
1 58129

9127
1 46033

9283
59 41121

9371
18743

9431
6 79033

9521
3 61799

9811
77 70313

9949
80 98487

10

14

9137
05071

9311
15273

9391
93911

9461
75689

9539
19079

9829
07689

9973
99191

1-     p   -
' factor

9157
30 76753

9323
8 95009

9397
2 25529

9479
18959

9601
22 85039

9833
45 62513

-Continued

9173
4 95343

9337
26 14361

9403
25 76423

9491
5 31497

9613
57679

9851
78809

9181
13 77151

9341
74729

9419
18839

9497
5 31833

9619
6 15617

9859
11 04209

A Computation of Some Bi-Quadratic Class Numbers

By Harvey Conn

A fascinating chapter in computational number theory began when Lagrange

showed that every positive integer is representable as the sum of at most

four perfect squares [1~]. Clearly three would not suffice in every case, as

7 = 22 + l2 + l2 + l2 would be an exception ; nevertheless, the problem of ex-

pressing some positive integer n as the sum of at most three squares soon achieved

a very special role. For, Gauss showed that r in), the number of such representa-

tions, is connected in a very simple way with the much studied (intrinsically

positive) class number, h, of the field generated by V — «■ Specifically for n

square-free (and n ^ 1,3 where h = 1),

(D rin) = gh

where g = 12 for n = 1, 2, 5, 6 and g = 24 for n = 3 (mod 8). Thus we could

conclude the existence of at least one such representation for the indicated n.

Gauss and later, Kronecker, reversed the direction of these equations by making

large scale tabulations of h from rin), although, unfortunately, no location for

Kronecker's alleged tabulation (for odd n up to 10,000) seems to exist in the

literature. In tallying the representation n = Xi2 + x22 + x32 it might be noted

that one must count each ordered triple (xi, x2, x3) of positive, negative, or zero

integers as a separate unit, so that as much as 23-3! = 48 could be contributed

to rin) when such a decomposition into squares is expressed as triples.

In more recent times, the representation theory was extended to integers in

the field k generated by V5, i.e., to the quantities ß = (a + ¿>V5)/2 where a and b

are of the same parity. Here we seek to represent, necessarily, only those integers

ß which are positive together with their conjugate (i.e., totally positive). Thus,

e.g., a > |ôa/5| > 0. The special surd V5 must be used because then, as Götzky
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showed [2 J, each totally positive integer in k could be expressed as the sum of the

squares of at most four integers in k. Later, Maass [3] made the more remarkable

discovery that at most three squares would always suffice ; in fact he arrived at a

formula analogous to that of Gauss. Since Maass' formula is the basis of a machine

calculation, we avoid irrelevant complexities by making certain further assump-

tions. First of all p is to be free from square integral divisors in k except for powers

of (V5 +3)/2 = [(V5 + l)/2]2 = 6. Secondly a > 5o > 0, since if 5b > a > V5Ô,
we can continually replace p by p/e. Then R(p), the number of representations

of p as the sum of three squares, is linked to an intrinsically positive quantity H,

namely the class number of the bi-quadratic field generated by -\5 and V—m, by

means of the following formula (which excludes p = 1, (5 + V5)/2, and 3

where H = 1) :

(2) B = R(p)/G.

Here G = 12 when (a, b) fá (1, 3), (1, 5), (2, 4), (5, 1), (5, 7), or (6, 0) mod 8
(actually, when r¡2 + p = 0 mod 4 is unsolvable for r¡ in k). Otherwise, G = 120

except when (a, b) m (1,5), (1,11), (5,7), (5,9), (6,0), (9,3), (9,13), (13,1),
(13, 15), or (14, 0) mod 16 (actually, when r¡2 + p = 0 mod 8 is solvable for 77 in

k) ; in these cases, G = 96.

A tabulation of R and H for 446 selected values of p = [a, b~] = (a + b V5)/2

was made on the stored program electronic computer, the IBM 650. The values

of a, b were selected with the restrictions

100 > a > 5b > 0,

and that p have (except trivially for powers of e) no square divisors in k; or,

in terms of ordinary integral arithmetic, the condition is that d, the g.c.d.

of (|[a + b~], \[a — 6]), be relatively prime to 5(=(V5)2), and both d and

rai — 5b2)/4d2 be square free. The machine assembled 446 such couples auto-

matically into the highest four decimal positions of 446 individual ten digit storage

locations, in lexicographic order.

The machine next tallied the decompositions p = £i2 + £22 + I32 where

{,• = [a¿, bi], ai = bi mod 2. Here the three couples £,• were scanned in lexico-

graphic order, with the restriction 0 < o« < 7, while a,- > 0 and a' < 100, (see

below). Thus, taking all sign possibilities, with

a' = lai2 + a22 + a32 + 5(bi2 + b22 + ö32)]/2,

b' = ± aj)i ± a2¿>2 ± a303,

the couples a', b' were constructed and compared with the 446 cases stored in the

memory. Whenever a matching entry was located the count was augmented and

accumulated in the last six decimal positions of the memory word. It might be

appropriate to mention that the IBM 650 has a special "table look-up" operation

that searches the memory at high speed for the appropriate entry. Without such

an instruction the search would have had to be programmed with a considerable

loss of running time.
In the final phase the "words" a, b, R(p) were unpacked and the congruences

were examined automatically to calculate if and to produce the output consisting

of one IBM card per value of p. (See attached table).
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Tabulation of R and H for ß = (a + èV5)/2

a b R H

2 0 6 1
4 0 12 1
5 1 24 1
6 0 32 1
7 1 24 2
9 1 24 2

10 2 24 2
11 1 24 2
12 0 48 4
12 2 48 4
13 1 96 1
14 0 96 1
14 2 24 2
15 1 48 4
15 3 48 4
16 2 24 2
17 1 48 4
17 3 120 1
18 2 72 6
19 1 48 4
19 3 48 4
20 2 48 4
21 1 120 1
21 3 48 4
22 0 192 2
22 2 72 6
22 4 72 6
23 1 72 6
24 2 72 6
24 4 48 4
25 1 48 4
25 3 192 2
26 0 96 8
26 2 48 4
26 4 120 1
27 1 120 10
27 3 96 8
27 5 96 8
28 0 96 8
28 2 96 8
29 1 192 2
29 3 48 4
29 5 72 6
30 2 96 8
30 4 96 8
30 6 48 4
31 1 48 4
31 3 72 6
31 5 48 4
32 2 72 6
32 4 120 10
32 6 120 10
33 1 144 12

a b R H

33 3 240 2
33 5 288 3
34 0 96 8
34 2 96 8
34 4 120 1
34 6 72 6
35 1 96 8
35 3 144 12
35 7 48 4
36 2 96 8
36 6 96 8
37 1 240 2
37 3 168 14
37 5 96 8
37 7 288 3
38 0 384 4
38 2 96 8
38 4 96 8
38 6 144 12
39 1 72 6
39 3 96 8
39 5 72 6
39 7 96 8
40 2 96 8
40 4 96 8
40 6 144 12
41 1 72 6
41 3 288 3
41 5 120 1
41 7 96 8
42 0 192 16
42 2 168 14
42 4 360 3
42 6 144 12
43 1 120 10
43 3 192 16
43 5 144 12
43 7 144 12
44 0 144 12
44 2 96 8
44 6 96 8
44 8 72 6
45 1 384 4
45 3 96 8
45 7 240 2
46 0 288 3
46 2 120 10
46 4 72 6
46 8 288 3
47 1 96 8
47 3 216 18
47 5 192 16
47 7 120 10

a b R H

47 9 144 12
48 2 216 18
48 4 168 14
48 6 144 12
49 1 144 12
49 3 240 2
49 5 288 3
49 7 96 8
49 9 120 10
50 2 144 12
50 6 144 12
50 8 96 8
51 1 144 12
51 3 96 8
51 5 168 14
51 7 144 12
51 9 96 8
52 0 144 12
52 2 144 12
52 6 192 16
52 8 120 10
52 10 192 16
53 1 360 3
53 3 168 14
53 5 144 12
53 7 480 5
53 9 480 5
54 2 120 10
54 4 168 14
54 6 96 8
54 8 384 4
54 10 144 12
55 1 144 12
55 3 192 16
55 7 144 12
55 9 144 12
55 11 96 8
56 2 144 12
56 4 96 8
56 6 120 10
56 10 120 10
57 1 216 18
57 3 576 6
57 5 480 4
57 7 192 16
57 9 192 16
57 11 360 3
58 0 288 24
58 2 144 12
58 4 360 3
58 6 288 24
58 8 192 16
58 10 120 10

a b R H

59 1 144 12
59 3 168 14
59 5 96 8
59 7 96 8
59 9 144 12
59 11 144 12
60 2 144 12
60 6 192 16
60 8 192 16
61 1 288 3
61 3 144 12
61 5 144 12
61 7 240 2
61 9 360 3
61 11 96 8
62 0 576 6
62 2 240 20
62 4 216 18
62 6 264 22
62 8 480 5
62 10 192 16
62 12 240 20
63 1 288 24
63 3 192 16
63 7 240 20
64 2 120 10
64 4 168 14
64 6 144 12
64 10 96 8
64 12 168 14
65 1 144 12
65 3 480 4
65 7 192 16
65 9 144 12
65 11 384 4
65 13 240 2
66 0 192 16
66 2 144 12
66 4 360 3
66 6 144 12
66 8 144 12
66 10 192 16
66 12 240 2
67 1 240 20
67 3 192 16
67 5 216 18
67 7 168 14
67 9 312 26
67 11 216 18
67 13 240 20
68 0 288 24
68 2 192 16
68 6 288 24
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Tabulation of R and H for p = (a + ôV5)/2—Continued

68  8
68 10
69
69
69
69
69

71
71
71
71
71

72
72
72

72
73
73
73
73

74
74
74
74
74

1
3
5
7

11
69 13

2
4
6

70
70
70
70  8
70 12
70 14

1
3
5
7
9

71  11
71  13

2
4
6

72 10
72 12

14
3
5
7
9

73 11
73 13

0
2
4
6
8

74 10
74 12
74 14
75
75
75
75
75

1
3
7
9

11
75 13
76 0
76
76
76

2
6
8

76 10
76 14

R H

264 22
192 16
240 2
144 12
240 20
480 5
192 16
144 12
144 12
192 16
192 16
576 6
192 16
240 20
216 18
192 16
120 10
144 12
144 12
168 14
144 12
360 30
336 28
192 16
216 18
192 16
216 18
672
600

360
576
192

240
168

192  16
288  24

3
6

16
144  12

2
14

144 12
144 12
480 4
144 12
192 16
192 16
288 24
192 16
240 20
192 16
144 12
144 12
192 16
192 16
144 12
144 12

77
77
77
77
77

78
78
78
78
78

79
79
79
79
79

80
80
80

81
81
81
81

R      H

1
3
5
7
9

672
288
168
480
600

77 13
77 15

0
2
4
6
8

78 10
78 12
78 14

1
3
5
7
9

79 11
79 13
79 15

2
4
6

80 12
80 14

81  11
81  13

480
480
216
672
360

15
0
2
4
6

81
82
82
82
82
82  8
82 10
82 12
82 14
82  16

7
24
14
4
5

288 24
672 7
768 8
360 30
240 20
288 24
768 8
312 26
240 20
240 20
192 16
264 22
144 12
168 14
168 14
144 12
144 12
144 12
192 16
192 16
336 28
144 12
240 20
144 12

4
5

18
7
3

192 16
384 32
216 18
480 4
336 28
192 16
312 26
720 6
240 20
240 20

83  1  240 20
83  3 288 24
83  5 240 20
83      7    288 24
83  9 360 30
83     11  168 14
83     13 288 24
83 15 336 28
84 0 192 16

a

84
84
84

2
6
8

84 10
84 14
85
85
85

87
87
87
87
87
87

91
91
91

3
7
9

85 11
85 13

17
0
2
4
6

85
86
86
86
86
86  8
86 10
86 12
86 14
86 16

1
3
5
7
9

11
87 15
87 17
88 2
88 4
88 6
88 10
88 12

14
1
3
5
7
9

11
13

88
89
89
89
89
89
89
89
89 15
89 17
90 2
90 4
90 6
90 8
90 12
90 14
90 16

R      H

240 20
288 24
168 14
240 20
192 16
288 24
576 6
768 8
144
192
240
672
168
192
192
384

144
384

168
576
360

480
576

12
16
2
7

14
16
16
4

144 12
264 22

12
4

384 32
288 24
360 30
432 36
288 24
264 22
336 28
264 22
264 22
192 16
336 28
264 22
336 28
288 24

14
6
3

192  16
240 20

168 14
168 14
240 20
480 4
288 24
288 24
480 4
336 28
288 24
168 14
240 20
192 16

91
91
91

93
93
93
93
93
93

94
94
94
94

95
95
95
95
95

96
96

97
97
97
97
97
97

7
9

11
91  13
91  15

R H

192 16
240 20
192 16
144 12

17
0
2
6

91
92
92
92
92 8
92 10
92 14
92 16
92 18

216
168

1
3
5
7
9

11
93 13
93 15
93 17
94 0

768
864
480

2
4
6
8

94 10
94 12
94 14
94 16
94 18

1
3
7
9

11
95 13
95 17
95 19

96 10
96 12
96 14
96 18

1
3
5
7
9

11

600
768

18
14

480 40
336 28
240 20
312 26
192 16
384 32
192 16
384 32

1056 11
384 32
360 30
720 6
480 4
408 34
288 24

8
9
5

240 20
240 20
264 22
480 5
144 12
216 18
216 18
480 5
240 20
288 24
240 20
288 24
240 20
192 16
240 20
240 20
192 16
216 18
240 20
312 26
240 20
240 20
192 16
288 24

336 28
456 38
960  10
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a b R H

97 13 600 5
97 15 432 36
97 17 288 24
97 19 360 3
98 2 288 24
98 4 840 7

Tabulation of R and H for ß = (a + ¿>V5)/2—Continued

b      R      Ha b R H

98 6 432 36
98 8 336 28
98 10 336 28
98 12 840 7
98 14 288 24
98 16 240 20

98 18 360 30
99 1 192 16
99 3 192 16
99 5 288 24
99 7 264 22
99 11 192 16

a b R H

99 13 288 24
99 15 192 16
99 17 240 20
99 19 288 24

The computation was monitored for about the first 200 tally operations to

make sure the score-keeping was correct in all possible cases. The tallying was,

as before, basically a question of seeing that every permutation and change in

sign in the triple (£lt £2, £3) counted as a unit. The total running time was roughly

2.5 hours. One might remark that the human time involved in computing these

class numbers H from basic algebraic concepts would have to be measured in

"life-times," not "man-hours."

The computation was completed 18 April 1958 and was sponsored in part

by the National Science Foundation Grant G-4222.
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Multiplication Time on The IBM 709

By D. D. Wall

Average multiply time is useful for roughly estimating problem running time

for various problems, as well as for roughly comparing different computing

machines. Determining average multiply time for the 709 is complicated, however,

due to its zero-skipping feature, and requires an investigation of runs of zeros

in binary sequences. The particular problem we solve is that of evaluating

Rin, I) = total number of runs of length / in all the 2" words of n bits each, and

Sin, I) = X"=; R(n, x) = number of runs of length > / in the 2" words of n

bits each. The resulting 709 average multiply time is 193 microseconds fixed

point, or 170 microseconds normalized floating point, and the purpose of this note

is to derive these two numbers.

We make use of a device which we call "differencing modulo 2," which obtains

an n — 1 bit number from a given n bit number by writing 1 or 0 according as

the successive bits in the given number exhibit a change or no change. For

example, each of the (complementary) 8 bit numbers 11010001 and 00101110

gives the same result 0111001 as its 7 bit difference modulo 2.
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