TECHNICAL NOTES AND SHORT PAPERS

Some Computations of Wilson and Fermat Remainders

by Carl-Erik Fröberg

The Wilson remainders

$$
W_{p} \equiv \frac{(p-1)!+1}{p}(\bmod . p)
$$

have been computed by Goldberg (J. Lond. Math. Soc. 28, 109, 1953, p. 252) for all primes $p<10,000$. He found 563 to be the third Wilson prime, the two others being 5 and 13. These computations have been continued on SMIL, the electronic computer of Lund University, for $10,000<p<30,000$, but no zeros were found in this interval.

The Fermat remainders

$$
F_{p} \equiv \frac{2^{p-1}-1}{p}(\bmod . p)
$$

have been computed for all $p<50,000$. Previously it was known that $F_{p}=0$ for $p=1093$, and now it is found that $p=3511$ is the second solution.

A table of W_{p} and F_{p} will be published elsewhere.
Note, added in proof:
Professor D. H. Lehmer has kindly informed me that the solution $p=3511$ was obtained by N. J. W. H. Beeger about 1930.

Dept. of Numerical Analysis
Lund University
Lund, Sweden

REVIEWS AND DESCRIPTIONS OF TABLES AND BOOKS

126[C].-Oliver L. I. Brown, "A short table for computing seven-place logarithms," Marchant Calculators, Inc., Oakland, California, Table No. 107, 1958, 2 p., $8 \frac{1}{2}^{\prime \prime} \times 11^{\prime \prime}$. May be obtained free of charge by writing to Marchant Calculators, 6701 San Pablo Avenue, Oakland, California.
A table of $h+\log x, x=1(.01) 1.49(.02) 2.15(.03) 2.84(.04) 3.60(.05) 4.35(.06)-$ 5.07(.07)5.77(.08)6.49(.09)7.21(.1)8.01(.11)8.67(.12)9.87, 8D, where $0<h \leqq$ 5×10^{-8} this set of intervals and the chorus of h permit calculation of logarithms to 7 D by one multiplication, one division and one addition using the formula $\log x=\log a+0.868589(x-a) /(\mathrm{x}+a)$, where a is the table argument nearest x. This formula is a truncated Taylor's series. Directions for use both direct and inverse are included.

The source of the logarithms is not noted. A few randomly chosen values were checked against [1] and no discrepancies noted.

