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1. Introduction. This paper presents a combinatorial method for the enumeration

of all strong weighted majority games, and an arithmetical method for the enumera-

tion of the games having "homogeneous" weights in the sense of von Neumann and

Morgenstern [1]. In contrast with the combinatorial method of von Neumann and

Morgenstern [1], both of these methods (a) do not generate extra isomorphic copies

of the same game, but (b) do generate some unwanted objects (so that tests are re-

quired), and (c) are recursive on the number of players. The known (von Neumann

and Morgenstern [1], Gurk and Isbell [2]) complete list of 30 strong simple games on

«i 6 players (21 of which are majority games) is supplemented by a complete list

of the 114 strong majority games with 7 non-dummy players.

A strong simple game (for the rest of this paper, a game) on a finite set Ar of

players is (1) intuitively, a scheme for distributing power to coalitions of players,

all-or-none (this is the sense of "simple"), and so that if the players are partitioned

into two parties, one must win (this is the sense of "strong"). (2) Precisely, it is

a set of subsets of N called winning sets, such that (a) any set containing a winning

set is winning, and (b) for any S C N, either S or N-S is winning but not both.

(3) In this paper, we shall identify two games if there is a one-to-one correspondence

between their players identifying their families of winning sets; to name a more

definite object one must say, not "the game G", but "the game G with ordered

players Pi, • ■ •, Pn", or a similar phrase. Beyond this, note that an n-player game

(e.g. the 435-player game of the House of Representatives) may be converted into

an (n + fc)-player game by adjoining k "voteless" players or dummies. The phrase

"an n-player game G" does not here imply that all n players are non-dummies. (In

the first part of the argument we need games with dummies; afterward we shall

exclude them.)

A majority game is a game for which one can assign numerical weights w\, • • •,

wn to the players so that the winning sets are precisely those sets which have more

than half the total weight. Some of the w¿ may be negative or zero; it is easy to see

that the corresponding players must be dummies. (Since every superset of a win-

ning set wins, a player can have negative weight w¡ only if | m>, | is so small that it

makes no difference.) Given a game G, the question whether G is a majority game

is effectively decidable, since it turns on a finite system of linear inequalities. No

better method than the obvious ones is known. It is clear that every majority game

has non-negative integral weights—even positive integral weights, for any weights

may be assigned to the dummies provided the weights of the other players are

made large enough.

The method described below for enumerating all majority games depends on

the determination of the game with ordered players with weights (w0, Wi, • • •, w„)

by the systems (w0 + W\, w2, ■ ■ -, wn) and (w0 — W\, w2, ■ ■ -, w„). The choice
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of weights and orderings gives no trouble. However, the method does not generate

weights, but only a, combinatorial description of the game. There is an obvious

formula for weights for the large game in terms of "suitable" weights for the small

games, but we have no version of the method which does not involve both the solu-

tion of systems of linear inequalities and the examination of systems which turn

out to be inconsistent. There is, however, a fairly simple combinatorial criterion

which screens out all the inconsistent systems through n = 7.

Weights (wi, • • ■, wn) for a game are called efficient if every winning set S con-

tains a subset which wins by exactly one vote. (This is equivalent to saying that

every minimal winning set wins by one vote. Von Neumann and Morgenstern [1]

call these "homogeneous" weights, but this term seems likely to lead to confusion.)

It is known [3] that efficient weights w¿ for a game with ordered players are unique ;

they are non-negative integers; for any other non-negative integral weights »< be-

longing to the same game with ordered players, ru, ^ v{ for all i; and when the non-

zero weights Wi are arranged in non-decreasing order, they grow no faster than the

Fibonacci numbers. We call a non-decreasing sequence of positive integers (wi,

■ ■ ■, wk) an efficient sequence if it is an initial segment of some non-decreasing effi-

cient game weights (wi, ■ • ■, wk , ■ • ■, w„). We find a characterization of these and

a recursive arithmetical method for generating them, which generates nothing but

efficient sequences. It is necessary, of course, to select those which are actually

game weights; for n = 7 there are 23 games in the 99 efficient sequences. The test

for this is simple, and the whole computation is far easier than the other one de-

scribed above.

It is known [3] that for n =g 4 there are at least 2n_4 efficient weighted majority

games with n non-dummy players. We obtain the upper bound (n — 1 ) !—actually

an upper bound for the number of efficient sequences. There is even more room

between the known bounds for general majority games with n non-dummy players;

we find there are more than 2" for nâ8, but no upper bound is known short of

22   (the number of sets of sets of players).

A little experimentation with the methods presented here will quickly show the

desirability of an arithmetical method for enumerating all majority games. This

would presumably involve a unique choice of weights for each game. For n i£ 7

each n-player majority game has minimum non-negative integral weights «>,-. (That

is, for any non-negative integral m defining the same game and order, Wi ¿ Vi. for

each i.) Such weights are clearly unique. However, they do not always exist, as we

show with a certain 12-player game.

To put the classes of games in perspective, consider the author's manuscript list

of 559 non-majority 7-player games without dummies, thought to be free from

duplications. It was computed by the von Neumann-Morgenstern method some

years ago and 109 of the 114 majority games were found.

2. The operators Hx and H2. We wish to formalize the construction described

by the symbol (w0 — Wi, w2, ■ ■ ■, wn). A motion of a game is a permutation of its

players taking winning sets to winning sets. Under the group of motions of the game

the players sweep through transitivity sets which we call roles. A court is a majority

game with a distinguished role. A natural ordering of the players of a majority game

is an ordering (Pi, • • -, Pn) such that the game has weights wt such that iv\ ^
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ií!¿ • • • è»>. However, a natural ordering of the players of a court is an ordering

(Pi, ■ ■ -, P„) such that Pi is an element of the distinguished role and for some

weights Wi, w2 ^ • • ■ Ï; wn .

Lemma 1. If (wi, ■ ■ -, wn) and (vi , • • -, vn) are two systems of weights for a ma-

jority game G with ordered players Pi, • • •, P„ , and wx S; ■ • • ^ w„ , and a is a

permutation of the integers from 1 to n such that vam ^ • • • ^ va(n) , then P, —-> Pa(i)

is a motion of G.

Proof. If Wi ^ w¡ and S is a winning set containing j but not i then replacing j

by í in S yields another winning set, since it does not decrease the weight. If also

Vj ^ Vi then i and j may be exchanged (by a motion leaving all other players fixed).

Then the lemma follows by induction.

For any majority game G of n + 1 ^ 2 players, we define an n-player court

Hi(G) and an n-player game H2(G) as follows. It suffices to define games with

ordered players, H with players Qi, ■ • ■, Qn , H' with players Ri, ■ ■ ■, R„ , specify-

ing that H1(G) consists of the game H with the role of Qi distinguished and H2(G)

is the game H'. Let (w0, • • •, wn) be any system of weights for G, arranged so that

w'o è • • • ^ w„ . We define H by its weights (w0 — u\ , w2, ■ ■ -, w„), and H' by

its weights (wo + Wi, • ■ •, wn).

Lemma 2. Hi(G) and H2(G) are determined by the game G; and together they deter-

mine G.

Proof. The first half is a routine analysis of definitions, and we omit it. For the

converse, let G and G' be majority games with H-¡(G) = Hi(G') = Hi and H2(G) =

H2(G') = H2. Naturally order the player Qi, • • -, Qn of the court Hi and the

players Ri, ■ ■ -, Rn of the court H2. Since Hi = Hi(G), there exist weights w0 è

• • • ^ wn for G and a one-to-one correspondence <p mapping the last n — \ players

P2, • • •, Pn , of G upon n — 1 of the players of Hi so that the omitted player of Hi

is a member of the distinguished role and the numbers Wo — W\ , w2, ■ ■ ■, wn,

assigned according to <p, are weights for Hi . By Lemma 1 and the definition of a

role, there is a motion a of Hi such that a(<p(Pj)) = Q¡ îor j = 2, ■ ■ ■, n. By the

same device we may regularize the correspondences of G to H2, G' to Hi and G'

to H2, so that players with like indices from 2 to n correspond. For any set S of

indices in {0, 1, • • -, n], by considering the four possible values of <S n {0, 1}, one

can give necessary and sufficient conditions for {P, | i e S] to be a winning set in

G, in terms of Hi, H2, and S. The same conditions are necessary and sufficient for

[Pi1 | i t S] to win in G'. Therefore the correspondence P¿ <-> P/ is an isomorphism

between G and G'.

We call an n-player court Hi and n-player majority game H2 compatible if there

exists a majority game G such that HX(G) = Hi and H2(G) = H2. Evidently one

can define a combinatorial scheme on the lines of a game, which must be the game

G iî G exists. The necessary and sufficient condition for compatibility is then the

solvability of the system of linear inequalities defining weights for G, together with

the axioms for a game. Reformulating, one has

Theorem 1. An n-player court Hi with naturally ordered players Q{ and an n-player

majority game H2 with naturally ordered players Ri are compatible if and only if both

(a) whenever {Qi \ i t S] is a winning set in Hi containing the player Qi, then

\Ri\i e S and i ^ 2} is a winning set in H2, and

(b) there exist weights Uifor Hi, Vifor H2, such that Ui = Vifor i = 2, ■ ■ ■, n.
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Proof. The necessity of (a) and (b) is obvious. Conversely, suppose (a) and (b)

are valid. We may replace each w, with max (w,, 0), and v¡ with max (v¡, 0),

without affecting either game (since players with negative weight are dummies)

or the validity of (a) and (b). We claim the numbers (vi + «i)/2, (vi — ux)/2,

u2, • ■ ■ ,un are weights for a game G with players P0, Pi, ■ ■ ■, Pn . Call the subsets

oî N = {P0, ■ ■ ■ , Pn] having more than half the total weight winning sets. For

any S cz N, not both S and N-S are winning. One must win unless they have the

same weight; but in that case it is clear that two complementary sets in Hi or in

H2 would have the same weight, which is impossible. To prove that any superset

of a winning set wins, it suffices to adjoin players one at a time. Adjoining a player

other than Pi cannot decrease the weight. Next suppose S is a winning set contain-

ing Po and not Pi. Then the set {Q,■ | j = 1 or j ^ 2 and Pj e S] is a winning set

in Hi, by computation ; the set {Rj \j = 1 or j ^ 2 and Pj e S] is a winning set

in H2, by (a) and the fact that supersets of winning sets win in H2 ; and »S u {Pij

wins in G, by computation. If S is a winning set containing neither P0 nor Pi, then

N-S contains both but fails to win; hence N-S-{Pi} cannot win either, and Su {Pi}

is a winning, set. Thus G is a game, and therefore a majority game. To show that

Hi = HiiG) and H2 = H2(G) it remains to prove that the ordering (Pc , ' • • , Pn)

is natural. Replacing Pi with Po never turns a winning set into a losing set, since

«i =ï 0. If »S is a winning set containing P2 and not Pi , and furthermore S contains

Po, then S u {Px} — {P2} wins in virtue of (a). Then the same is true if P0 is not

in S, by passage to the complement. For i = 2, ■ • ■ , n — 1, the natural ordering

of the players of Hi implies that replacing Pl+i by Pt never turns a winning set

into a losing set. Therefore we may rearrange the given weights for G into weights

«)o è  • • • ^ »nby successive transpositions, and the proof is complete.

The author's experience suggests that (b) of Theorem 1 mayas well be ignored

in computation; this is discussed in Section 4 below.

Corollary 1. For every n-player court Hi there exists an n-player majority game

compatible with Hi.

In fact there exists an n-player majority game compatible with all n-player

courts. One system of weights for it is (1, 0, •■ -, 0) ; but as we noted before, any

weights may be assigned to the n — 1 dummies provided the first weight is large

enough.

Corollary 2. Let f(n) be the number of different n-player majority games, g(n)

the number of these which hove no dummies. Thenf(n-\- 1) ^ 2/(n) — landg(n-\- 1)

â 2g(n) - 1. Forn > 6, fin) > 2", and for n > 1, gin) > 2".

Proof. Every majority game has at least two roles, with the exception of the

games having weights (1, 1, • ■ -, 1), of which there is one for each odd number of

players. In any case the number of n-player courts is at least 2/(n) — 1 and the

number without dummies is at least 2g(n) — 1. Corollary 1 and Lemma 2 show

that there are at least as many corresponding n + 1-player majority games; and

clearly G cannot have any dummies when Hi(G) has none. Then if f(n) > 2", it

follows that fin + 1) > 2n+1; and the list at the end of the paper shows that

fil) = 135 > 27. The same induction applies for g; and though gil) is only 114,

the list shows there are over 256 corresponding courts.

The true order of / and g is not known. No respectable upper bound is known,
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though one can make slight improvements on 22 , which is the number of sets of

sets of players. (Of course, the lower bound 2" may be as wide of the mark.)

3. Efficient sequences. In this section we shall consider only games without dum-

mies; it is also convenient to reverse our convention as to ordering. Let a sequence

be a finite non-decreasing sequence of positive integers. For any sequence w =

(wi, • • • , Wn), let w(N) be the total Sî~" to,- ; for any subset S of N = {1, • • •, n},

let wiS) be 2, e sWi. Then wiS) is called the weight of iS.

Weights ÍWí) for a majority game are efficient provided w(N) is an odd number

2p — 1 and every subset of weight greater than p contains a subset of weight ex-

actly p. These conditions automatically make (w/) weights for a game, but the ab-

sence of zeros does not imply the absence of dummies. (Example: 1, 2, 2, 2.) We

are assuming there are no dummies; that is, every index is in some set of weight p.

Then it is known [2, 3] that the efficient weights are uniquely determined by the

game, namely as minimum integral weights, and that their growth is restricted by

the inequality

(*) M>,á  1+  ZjZtWj.

For any sequence w, let us call the non-negative integer p acceptable for w pro-

vided every set of weight >p contains a subset of weight exactly p. Clearly 0 is

acceptable for each w, no integer from 1 to wn — 1 can be acceptable, a sum of

acceptable numbers is acceptable, and all sufficiently large numbers are acceptable.

Lemma 3. p > 0 is acceptable for (wi, ■ ■ ■ , wn+i ) if and only if both p and

p — Wn+i are acceptable for (wi, ■ ■ ■ ,w„).

Proof. If p is acceptable for the long sequence it is clearly acceptable for a part

of the sequence. If p — wn+i is not acceptable for (wi, ■ ■ ■ , wn), one has a set S

such that w(S) > p — w„+i and S contains no subset of weight exactly p — wn+i.

Since the Wi are increasing, one can assure that w(S) < p. Then S u {n + lj can

contain no subset of weight p, a contradiction. The converse is obvious.

Now let us call p admissible for w if both p and w(N) + 1 — p are acceptable;

p is proper ifl ^ p ^ w(N). Let the sequence w be efficient provided it satisfies

(*) and some proper p is admissible for w.

Theorem 2. A sequence w is an efficient sequence if and only if w is an initial

segment of the iincreasing) weights for some efficient weighted majority game.

Proof. If w is an efficient sequence with proper admissible

p ^ p' = w(N) + 1 — p,

then p + p' is acceptable, hence admissible, for (wi, • • • ,wn,p,p'), by four ap-

plications of the lemma. To show that every index is in a set of weight p + p' it

suffices, by efficiency, to show that this is true of the least index. Suppose * is the

least index actually used; if i > 1 then by (*), w,; is ^ the sum of the preceding

weights, and i can be replaced by a set of smaller indices without diminishing the

weight, which reduces to a contradiction.

For the converse, (*) is established in a previous paper [3], and the rest is clear

from the lemma. Note that (*) assures that for n > 1, one of p and w(N) + 1 — p

is >wn, so that subtracting w„ leaves a proper integer.
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Theorem 3. Let (wi, ■ • • , w„) be efficient. Then (wi, • • • , wn , wn+i) is efficient

is and only if (I) wn+i 2: w„, (2) wj„+i ̂  1 + 2"Ji t«¿, and (3) wn+i = h — kfor

some h and k which are admissible for (íüi , • ■ • ,w„). A proper p is admissible for

(Wl,   ■ ■■   , Wn+l)

if and only if both p and p — wn+i are admissible for (wi, ■ ■ ■ wn).

Proof. The last statement follows from the lemma and the rest follows from that.

Note that since 0 is always admissible, the possible values of wn+i always include

the proper admissible numbers. There are not always at least two of these. However,

it is known [3] that there are at least 2n_4 n-player games with efficient weights, for

n ^ 4. From Theorem 3 and the proof of Theorem 2 we see that the number of

efficient sequences of length n is an increasing function of n and lies between the

numbers of efficient game weights of length n and of length n + 2. In the other

direction we have

Theorem 4. For an efficient sequence (wi , • ■ • , w„) there are at most n values of

wn+i which make (wi, • • • wn+i) efficient. Hence the number of efficient sequences of

length n is between 2n~ and (n — 1) !.

Proof. There are at most n acceptable integers 8* between wn and w(N) + 1 — wn ,

namely, wn , wn + w„-i, • • • , w(N); for clearly if this sequence skips over p,

Sk < p < s^+i, then at step k -f- 1 we have a set of weight >p which drops below

p if its smallest element is removed. Now wn+i itself need not be acceptable, but

w(N) + 1 — Wn+i is. For there are p and p' acceptable for (wi, • • • , wn) such that

p + p' = w(N) + w„+i + 1. By the lemma, both p — wn+\ and p' — w„+i are

acceptable for (wi, ■ ■ ■ , wp) ; hence so is their sum, which is w(N) + 1 — wn+i.

This establishes the inductive step, and a glance at the case n = 1 establishes the

upper bound (n — 1)!. The lower bound 2™~4 is established in [3] for n ^ 4, and

the cases n = 1, 2, 3 are easily verified.

4. The enumeration. A method for generating all majority games of n + 1 players

from a list of all n-player majority games is as follows. List all the courst (II, r),

H an n-player majority game and r a role of H. For each (H, r) there is at least

one compatible game Il2, as pointed out in Corollary 1 to Theorem 1. All compatible

games must be determined. In some cases (e.g. when H2 has weights (1, 0, • • • , 0))

one can write down weights for the corresponding n + 1-player game G by rote.

In general, however, one must screen the possible values of H2 and solve the sys-

tems of linear inequalities defining weights for G. For hand computation it seems

best to apply the necessary condition (a) of Theorem 1, and for each H2 satisfying

that condition, to attempt to solve the inequalities for weights for G with the side

conditiont w( ^ 0. In a run such as the enumeration of the 7-player majority games

one develops subroutines; for example, there are different courts Hi , Hi, such that

H2 is compatible with Hi if and only if H2 is compatible with Hi', and one may

make mental lists of the corresponding classes of games H2.

It appears to be feasible though far from routine to code this method for automatic

computation. No attempt has been made. For automatic computation it might be

preferable simply to ignore the combinatorial conditions (a) and deal entirely in

inequalities. However, (a) is a highly effective screen; for n ^ 6 every pair (Hi, H2)

satisfying (a) is compatible.
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The method expounded by von Neumann and Morgenstern [1] for enumerating

all strong simple games involves, necessarily, a listing of winning sets (no other

way is known for describing these games in general) ; and it also involves obtaining

and then eliminating multiple isomorphic copies of each game. No other method is

known for this problem. However, for generating a list of majority games, the pres-

ent method is far superior. Note that if one were to employ the method of von

Neumann and Morgenstern for this special purpose it would still be necessary to

examine the inequalities determining whether each game has weights.

The recursive enumeration of all efficient sequences involves additional informa-

tion which is most easily generated from the beginning, the efficient sequence (wi),

where wi = 1. One may lay out three columns on a sheet of paper, the first giving

the sequence (wi, • ■ ■ , wn), the second the list of all integers from 0 to w(N) which

are admissible for w, and the third the list of all differences of integers in the second

column which satisfy the inequalities (1) and (2) of Theorem 3. The numbers in

the third column are precisely the values of w„+i which can be used for an extension

(wi, ••• ,wn, Wn+i); Theorem 3 tells how to compute the second column for

(wi, ■ ■ ■ , wH+i), using the entries in the first column of this row and in the second

column of the earlier row; then the new third column is computed from the new

first and second columns. Coding this computation should be routine; the only

complication is the irregularity of the size of the clumps of numbers.

It would certainly be desirable to develop a method for the enumeration of all

majority games which, like the method for efficient sequences, should deal directly

with arithmetic properties of the weights. A prerequisite would seem to be a scheme

for assigning unique weights (not necessarily integers) to each game. The obvious

idea of taking minimal integral weights is not enough, because these are not unique.

To see this, consider the two sets of weights (1, 3, 5, 6, 8, 11, 12, 23, 28, 31, 31, 38)

and (1, 3, 5, 7, 8, 11, 12, 23, 28, 31, 31, 37). One may verify that these weights de-
termine the same game. One then proves twelve lemmas which show that any

weights for this game are at least as large as (1, 3, 5, 6, 8, 11, 12, 23, 28, 31, 31,

37). First lemma: the first player is not a dummy; hence his weight in integers

must be at least 1. The proof that the second weight must be at least 3 involves

finding combinations of 1, 3, 11, and 12. Having all this, one observes that the

twelve minimum values do not form weights for any game, since they permit a tie ;

there are no integers between them and the two sets of weights, and therefore both

are minimal.

It can be shown by similar arguments that the 135 sets of weights listed below

are all minimum. (Criteria from a previous paper [3] aid in most of the verifica-

tions.) In particular, no two of the 135 games are isomorphic. Comparable care has

been taken to assure that no game is omitted. The list for n g 5 is taken from von

Neumann and Morgenstern [1], and the list for n = 6 from Gurk and Isbell [2].

The 15 efficient weighted majority games of less than seven players

1 11113 111114 111334
111 11122 111123 112225

1112 11223 111224 112335
11111 111112 111233

The 6 nonefficient weighted majority games of less than seven players

111222 112234 122334 122345
112223 122233
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The 23 seven-player efficient weighted majority games

1111111 1111223 1112226 1122227
1111113 1111234 1112244 1122355
1111115 1111335 1112336 1122557
1111122 1111344 1112446 1123338
1111124 1111445 1113337 1123558
1111133 1112222 1113447

The 91 seven-player nonefficient

1111223 1123345
1111333 1123356
1112224 1123446
1112233 1123457
1112235 1133344
1112334 1133355
1112345 1133445
1113335 1133456
1113346 1133467
1122223 1133557
1122225 1133568
1122234 1222233
1122236 1222235
1122245 1222334
1122333 1222336
1122335 1222345
1122337 1222347
1122344 1222356
1122346 1222455
1122445 1222556
1122447 1222567
1122456 1223335
1123334 1223337

weighted majority games

1223344 1234557
1223346 1234568
1223348 1234579
1223357 1244567
1223445 1244679
1223447 2222333
1223449 2223334
1223456 2223345
1223458 2223367
1223467 2233344
1223559 2233445
1224457 2233456
1224558 2233478
1224569 2234455
1233345 2234556
1233446 2234567
1233455 2234589
1233457 2334456
1233468 2344567
1233556 2345678
1233567 3334455
1233578 3345567
1234456
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