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If f(x) is continuous over any interval, which we may take, without loss of

generality, to be the interval — 1 ^ x á 1, there exists a unique polynomial Pn*(x),

of given maximum degree n, which is such that the maximum of | f(x) — Pn*(x) \

over —1 á x ^ 1 is less than the maximum of \f(x) — Pn(x) | over —1 ^ x ^ 1,

where Pn(x) is any other polynomial of degree not exceeding n. The polynomial

Pn*(x) is known as the Chebyshev approximation, of maximum degree n, to f(x)

over — 1 ^ x ^ 1. It is characterized by the fact that f(x) — Pn*(x) assumes

extreme values at n + 2 points, at least, of the interval -1 g i ^ 1, these ex-

treme values being equal in magnitude and alternating in sign [1]. We refer to the

points of any such set of n + 2 points as critical points, and we denote them by

(xy*, ■ ■ ■ , xn+2), where —1 ^ Xi* < ■ ■ ■ < xn+2 ^ 1. Thus, the end points, ±1,

of the interval —1 ^ x i= 1 may be critical points, but at least n of the n + 2

critical points, namely, x2*, ■ • • , xn+i , are interior points of this interval.

We assume that f(x) is not only continuous, but also differentiable, over — 1 ^

x j£ 1, and so the derivative of f(x) — Pn*(x) is zero at each of the n points x*,

■ ■ ■ , £„+1. If the derivative of f(x) — Pn*(x) cannot be zero more than n times, it

follows that xi* = — 1, xn+2 = 1 and that the derivative of f(x) — P„*(x) has pre-

cisely n zeros that are interior points of the interval -.1 j¡.-x j 1.

The polynomial Pn*(x) is an odd function of x when/(x) is odd, and is an even

function of x when/(a;) is even. Thus, when/(x) is odd we may take n to be even,

the maximum degree of Pn*(x) being n — 1, and when f(x) is even we may take n

to be odd, the maximum degree of P„*(x) being again n — 1. In these cases the

critical points are distributed symmetrically about the mid-point x = 0 of the

interval — 1 á x á 1, and we may confine our attention to the part 0 ^ x ^ 1

of this interval. Whenf(x) is odd, so that n is even, the number of critical points is

even and x = 0 is not a critical point; on the other hand, when f(x) is even, the

number of critical points is odd and x = 0 is a critical point. When/(z) is odd, or

even, and x = 1 is a critical point, we change our notation and denote the positive

interior critical points by x* < x* < ■ • ■ < xk*, where n = 2k in the first case,

and n = 2k + 1 in the second. For example, whenf(x) = arc tan x, P2k(x) is an

odd polynomial of degree ^2fc — 1, and so the derivative of arc tan x — P2k(x)

cannot vanish more than 2k times; this implies that the points ±1 are critical

points, and, in addition, since this derivative must vanish 2k times, that P2k(x) is

of degree 2k — 1. Similarly, when f(x) = cos mx, m > 0, P2jh-i is an even poly-

nomial of degree 2k, the points 0 and 1 being critical points.

It is clear that Pn*(x) is easily determined if any set xi* < x* <  • ■ •  < xn+2
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of critical points is known; indeed, the n + 2 equations f(x*) — Pn*(xk*) =

( — 1) ~ to, k = 1, ••• , n + 2, constitute a set of n + 2 linear equations for o and

the Ti+1 coefficients of Pn*(x). lî xi < x2 < ■ ■ ■ < xn+i is any set of n + 2 points

of the interval —1 í iá 1, and we write f(xk) — Pn(xk) = ( — l^^E, k = 1,

■ ■ ■ , n + 2, these equations determine E and the n + 1 coefficients of Pn(x), and

the function i? of the n + 2 variables (zi, • • • , xn+2) has an absolute maximum

at (x*, ■ ■ ■ , xn+2). Thus, the derivative of E with respect to each of the n variables

x2, ■ • • , xn+i is zero at (x*, ■ ■ ■ , xn+2), and this implies that the derivative of

each of the n + 1 coefficients of P„(x) with respect to each of the n variables

x2, ■ ■ ■ , Xn+i is zero at (xi*, ■ • • , x„+2). Hence, these coefficients are insensitive to

small changes of the variables (x2, ■ ■ ■ , xn+i) when these variables have the

values x*, ■ • ■ , xn+i and xi = x*, xn+2 = xn+i ■

The method by which we determine P„*(x) is an iterative one. Let us suppose

that the points ±1 are critical points, so that there are n interior critical points,

which we denote, changing slightly our previous notation, by x* < x* < ■ ■ • <

x„*. Let us suppose further, that we are in possession of a polynomial, Pn(m(x), of

degree ^n, which we term our entering polynomial and which possesses the follow-

ing property: The difference/(x) — Pnm(x) assumes extreme values of alternating

sign at n + 2 points of the interval — 1 j¡ X j£ 1. We denote by Xim, • • • , xnw

approximations to the second, third, • • • , (n + l)st of these points and we regard

xi(1), ■ • • , xnw as approximations, in the first cycle of an iterative procedure, to

Xi*, ■ ■ ■ , xn*. We determine the approximating polynomial of degree ¿n, Pnw(x),

with which we end the first, and begin the second, cycle of this procedure by means

of the n+1 linear equations obtained by eliminating Em from the n + 2 linear

equations

/(-l) - P„(1>(-1) - Ew;       f(xkw) - Pnw(xkm)  = (-l)kEw,

k - 1, ■ • • , n;      /(l) - P„(1)(l) = (-l)"+1i?(1).

Denoting.« -1) - P„<0,(-1) by 50(1),/(^(1)) - Pnm(xkll)) by bka), k = 1, • • • , n,

and/(l) — P„<0)(1) by bn+i, we can write these n + 2 equations as

8P>(-1) = 5„(1) - Ew;       bPn(xkm) = bk{1) - (-l)kEw, k = 1, ■ • ■ , n;

5Pn(0)(i) -*&- (-iy+1Ew,

where bP„m(x) denotes the polynomial, of degree ^n, PnW(x) — Pn(0)(x). Ea) is

conveniently eliminated by combining the last n + 1 of these n + 2 equations al-

ternately by addition and subtraction with the first, and the n + 1 coefficients of

bPnm(x) sire obtained by solving the resulting n+1 linear equations. Then the

coefficients of Pnm(x) are obtained by adding each of the coefficients of 5P„<0,(x)

to the corresponding coefficients of Pn(m(x).

The first step in the second cycle of the iterative procedure is the determination

of new approximations Xi2), • • • , xnm to x*, • • • , x*. Just as X\l, ■ • • , x„w were

approximations to the zeros of D[f(x) — P„ (x)], where D denotes differentiation

with respect to x, so Xil2), • ■ • , xn(2) are approximations to the zeros of D[f(x) —

Pnm(x)]. Writing xk2) = xka) + Sz*/1', k = 1, • • ■ , n, we see that the value of

D[f(x) - Pnm(x)] at xka) + bxkm must be the same as the value of D[bPn°(x)] at

xkl  + bxkm, and this is the same, to the first order of infinitesimals, as the value
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of D[ôP„ ° (x)] at xkm. Thus, to the first order of infinitesimals, the value of D[f(x) —

Pnm(x)] at xkm plus the value of D2[f(x) - P„(0)(x)] at xkw times ôxkm is equal

to the value of D[SPn m(x)] at xkm, so that ôxkw is the negative of the quotient of

the value of D[f(x) - Pna)(x)] at xkm by the value of D2[f(x) - Pjm(x)] at xkm.

We denote the value of D[f(x) — P„m(x)] at xk(1) by tk2), k = 1, • ■ ■ , n, so that

5xk is the negative of the quotient of tk2) by the value of D2[f(x) — Pnm(x)] at

xkw. If th2) is zero, xk2) = xka) and D[f(x) — Pnm(x)] is zero at xk2) = $*(1). In

order to complete the second cycle, we calculate the n + 2 numbers 50(2> = /( — 1 ) —

Pnm(-D, h» = f(xhm) - Pnm(xh&)), (k *= 1, ..- , n), |& = /(l) - Pn(1)(l),

and determine, as before, the coefficients of oPnm(x). If, to the number of decimals

we are using, the n + 2 numbers 50, • • • , Sn+1 are equal in absolute value and al-

ternating in sign, the coefficients of oPnm(x) are all zero and the approximating

polynomial, P„i2)(x), with which we end the second cycle is the same as the ap-

proximating polynomial, Pnm(x), with which we began it.

In a previous publication [2] we determined the numbers xi, ■ ■ ■ , xn in each cycle

by solving the equation D[f(x) — Pn(x)] = 0, where Pn(x) is the approximating

polynomial, of degree ;£»> with which we begin the cycle, but the less exacting

method of the present paper is equally effective.

It remains only to describe the selection of our entering polynomial approxima-

tion, Pnm(x), of degree ^ n, and the determination of the approximations XiW, ■ ■ ■ ,

xna) to the n points of the interval — 1 < x < 1 at which D[f(x) — P„m(x)] is

zero. On setting x = cos 6, we see that/(x) becomes a function, F(6), of 0 defined

over 0 ^ Ö ^ 7T, and we write the Fourier cosine series of F(d) as Joo + a-i cos 6

+ a2 cos 26 + • • • . Then cos m6 is a polynomial function, Tm(x), of x of degree

m, which is known as the mth Chebyshev polynomial, m = 0, 1, 2, ■ • • , and

|a0 + aiTi(x) + a2T2(x) + • • • is known as the Chebyshev expansion of f(x).

The sum of the first n + 1 terms of this Chebyshev expansion of f(x) is a poly-

nomial function, of degree ^n, of x, and it is this polynomial function that we take

as Pnm(x). We say that Pnm(x) is furnished by the truncated Chebyshev expansion

(the truncation taking place at the term which involves Tn(x)). Now f(x) —

P„m(x) = an+1Tn+i(x) + • • • , and we take as our approximations to the n points

of the interval — 1 < x < 1 at which D\f(x) — Pnm(x)] = 0 the n points of this

interval at which D[Tn+i(x)] = 0, it being assumed that an+i ^ 0. (If f(x) is odd

its Chebyshev expansion is of the form axTx(x) + a3T3(x) + • • • and n = 2m is

even; then we truncate this Chebyshev expansion at the term involving T2m_i(x),

and we take as our approximations to the m points of the interval 0 < x < 1 at

which D[f(x) — P„(0)(x)] is zero the m points of this interval at which D[T2m+i(x)]

is zero. Similar remarks apply to the case where f(x) is even and n = 2m + 1 is

odd.) Since

n \rr     i  M       /     .   ,v sin (n + 1) 0
D [Tn+1(x)\ = (n + 1)--j—-,

sin 6

we have

K-Uxkl   = COS { it--r-r ), k =  1,
\        n +

Example 1. f(x) = arc tan x, n = 6.
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There are three positive interior critical points, which we denote by x*, x*, x*,

and

Pom(x) = 0.994949366x - 0.287060636x3 + 0.078937176x6,

since the Chebyshev expansion of arc tan x is

2 [p7\(x) - | T3(x) + | Ttix) - • • • ],

where p = T — 1 = 0.414213562, to 9 decimals. The first-cycle approximations to

x*, x*, x* are

xiw = 0.222520934,       x2m = 0.623489802,       x3(1) = 0.900968868,

and the polynomial approximation with which we end the first cycle is

P«w(x) = 0.995383022x - 0.288700440a;3 + 0.079313307z6,

the values of arc tan x — Pn ° (x) at the points xi   , x2(1>, x3(1>, 1 being

hW = 0.000676851,       S2(1) = -0.000604555,

Ô3H) = 0.000546760,        54(1> = -0.000527744,

respectively. The corresponding results for the second cycle are

Xi(2) = 0.205422893,       x2<2) = 0.593832571,       x3(2) = 0.888813502,

Si® = 0.000603543,       52(2) =  -0.000619441,

Ô3(2) = 0.000607728,        Ô4(2) = -0.000597725,

and

P/2)(x) = 0.995357994x - 0.288690417x3 + 0.079339173x5.

In the third cycle we find

X!(3) = 0.205218790,       x2(3) = 0.593469973,       x3<3) = 0.888196372,

S!(3) = 0.000608588,        S2(3> = -0.000608590,

S3(3) = 0.000608612,       á4(3) = -0.000608588,

and

P6(3)(x) = 0.995357955X - 0.288690238x3 + 0.07933904 lx6.

Finally, in the fourth cycle we obtain

x,(4) = 0.205219373,       x2(4) = 0.593470162,       x3<4) = 0.888196289,

0lw = 0.000608595,       S2<4) = -0.000608595,        53(4) = 0.000608595,

54<4) = -0.000608595,       P6(4)(.t0 = Pom(x).

Thus, to seven decimals,

P6*(x) = 0.9953580.T - 0.2886902x3 + 0.0793390x6,
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and the maximum of | arc tan x — P6*(x) | over — 1 ^ x ^ 1 is 0.0006086. Hastings

[3] has given P6*(x) for arc tan x to six decimals as 0.995354x — 0.288679x3 +

0.079331X6.

7-. i   ¿> */ \       i     « + x 10è + 1
Example 2. ](x) = log-,       a = -—j-,       n = 4.

a — x 10* — 1

The number a must be greater than 1; we use the value indicated in order to

check the work of Hastings. Setting £ = (a + x)/(a — x), the polynomial P4*(x)

which we determine will be an approximation to log £ over the interval 10 ^ £ ^

10*.

The Chebyshev expansion of log (a + x)/(a — x) is

4M ^7\(x) + |3 Tt(x) + |5 T6(x) + • • •

where M = log e = 0.434294482, to 9 decimals, and p = a - (a2 - 1)* =

0.280130000. The entering polynomial approximation is P4(0)(x) = 0.448447982x +

0.050916894x , and our first-cycle approximations to the two positive interior critical

points are

X!(1) = 0.309016994;       x2(1) = 0.809016994.

The values of log (a + x)/(a — x) — P4(0)(x) at the points xi   , x2(1>, 1 are

bxm = 0.000572828,       á2ci) = -0.000607958,       ô3a) = 0.000635124,

respectively, and P4(1)(x) = 0.448349355x + 0.051051305x3. In the second cycle

X!(2) = 0.321484228;       x2(2> = 0.821954759

5/" = 0.000600487,       62(2) = -0.000602901,       53(2) = 0.000599339

P4(2)(x) = 0.448347007x + 0.051051766x3,

and, in the third cycle,

Xi(3) = 0.321320097;       x2(3) = 0.821455202

5i(3) = 0.000601227;       ä2(3) = -0.000601233;       53<3) = 0.000601227

P4(3)(x) = 0.448346999x + 0.051051771x3,

so that, to seven decimals, P4(3)(x) coincides with P4(2)(x), and P*(x) =

0.4483470x + 0.0510518x3, the maximum value of | log (a + x)/(a - x) - P4*(x) |

over -1 S x á 1 being 0.0006012.

If x is replaced by a(x — l)/(x + 1), there results the approximation 0.8630458

[(x - l)/(x + 1)] + 0.3641410[(x - l)/(x + l)]3 to log x over the interval

10 ^ x ^ 10 . Hastings [3] gives as the coefficients in this approximation the

numbers 0.86304 and 0.36415, respectively.

In a recent paper by Barth [4], P*(x) for In (a + x)/(a — x), a = (10* +1)/

(10  — 1), is given, to ten decimals, as

0.8690286986.E + 0.2773833195x3 + 0.2543282307x5.
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The correct formula, to seven decimals, for P6*(x) is

0.8690285x + 0.2773864a;3 + 0.2543195x6,

the maximum of | In (a + x)/(a - x) - P6*(x) | over -1 ^ x ^ 1 being 0.0000337.

Example 3. /(£) « ln(l+{),0 St S 1,« • 4
We denote in this example the independent variable by £, instead of x, since the

interval, 0 ^ £ 5= 1, is not the standard interval — 1 Si x Si 1. The linear trans-

formation x = 2% — 1 transforms the interval 0á {| 1 into the interval —la

iál, and the problem of determining P4*(£) for In (1 + £) over 0 5[ £ ^ 1 is the

same as that of determining P*(x) for In f (3 + x) over — 1 ^ x ^ 1.

The Chebyshev expansion of In \ (3 + x) is

-2 log, 2p + 2 IVtVx) - | T2(x) + | T3(x) ■ - -1,

where p = 2 — 1, and our entering polynomial approximation, of degree 4, is

P4(0)(£) = 0.000069446 + 0.996261948^ - 0.466442439£2 + 0.218665484£3 -

0.055459314^ . Our first-cycle approximations to the four interior critical points

are

fc(U = 0.095491503,        £2(1> = 0.345491503,
£3a) = 0.654508497,       ¿4H) = 0.904508497,

and the values of In (1 + £) - P4(0)(f) at the points 0, &">, £>(1), £,<", £4(1), 1 are

S0(1) = -0.000069446,       ái(1) = 0.000066650,       52(1) = -0.000060948,

ê3a) = 0.000055988,        54(1) = -0.000053017,       56(1) = 0.000052055.

The polynomial approximation, of the fourth degree, with which we end the first

cycle is, to eight decimals,

P4(1)(£) = 0.000059471 + 0.996558114^ - 0.467864445£2

+ 0.220882267£3 - 0.056547698£4.

In the second cycle we obtain

à<2) = 0.084407707,        &(2) = 0.318071278,

£j(2) = 0.629216597,       £4(2) = 0.895475308;

á0<2) = -0.000059471,        5j(2) = 0.000060703,        S2(2) = -0.000061938;

«3<2> = 0.000061315,        54<2> = -0.000060043,       á6(2) = 0.000059471;

P4(2,(£) = 0.000060712 + 0.996540728? - 0.467834593£2

+ 0.220891205?3 - 0.056571583£4;

and, in the third cycle,

&<*>  =  0.085058286,       £2<3)  = 0.319106141,        £3<3)  = 0.629174645,

£4t3) = 0.895122761;
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b/' = -0.000060712,       br = 0.000060716,        52(3) = -0.000060716,

S3(3' = 0.000060712,        54(3) = -0.000060713,        ô6(3) = 0.000060712;

P6(3>(£) = 0.000060714 + 0.996540741£ - 0.467834762£2

+ 0.220891541£3 - 0.056571768£4.

Beginning the fourth cycle, we compute

£/4) = 0.085060350,       £2<4) = 0.319112305,

£3<4) = 0.629171981,       £4C4) = 0.895123131,

and we find that the corresponding values 5,(4) for i = 0, 1, 2, 3, and 4 are all nu-

merically equal to 0.0000607141, to within a unit in the tenth decimal place.

Thus, to seven-decimal accuracy in the coefficients, we have

P4*(£)  = 0.0000607 + 0.9965407£ - 0.4678348£2 + 0.2208915£3 - 0.0565718£4.

The discrepancy between this approximation and the similar one presented in

our earlier paper [2] is attributable to the premature termination of the iterative

procedure in that reference, which stemmed from the erroneous belief that the pre-

cision of the coefficients of the approximating polynomial was comparable to that

of the maximum difference between that polynomial and the given function. In this

example the quantities s/4' have all become stabilized to 10 decimal places, whereas

the coefficients of the corresponding approximating polynomial are subject to

errors of approximately a unit in the eighth decimal place. This behavior of the

coefficients is due to the relatively small value of the determinant of the system

of equations used for their evaluation. Calculation of such coefficients to ten-place

accuracy generally will require double-precision operations.

Hastings [3] gives as an approximating polynomial of degree 4, whose graph is

arbitrarily required to pass through the origin, the following

0.9974442x - 0.4712839x2 + 0.2256685x3 - 0.0587527x\

for which the maximum departure from In (1 + x) over the interval 0 á x ^ 1 is

0.0000710, in contrast to the value 0.0000607, attained by the Chebyshev approxi-

mating polynomial of the same degree.

Example 4- f(x) = cos (tt/4)x, n = 3.

The Chebyshev expansion of cos (7r/4)x is J0(tt/4) — 2J2(ir/4)T2(x) +

2Jí(tt/4)Tí(x) — • • • , where J2k(ir/4), for k = 0, 1, • ■ • , is the value at ît/4 of

the Bessel function of the first kind, of order 2k. There is only one positive interior

critical point x*, and our first-cycle approximation to this is a; = cos x/4 =

0.707106781. Our entering polynomial approximation is P3(0)(x) = 0.998068558 -

0.292873289x2. The values of cos (tt/4);z - P3<0)(x) at the points 0, x(1), 1 are

bom - 0.001931442,       êim = -0.001921422,        52(1) = 0.001911512,

and P3(1)(x) = 0.998078551 - 0.292893219x2. The coefficient of x2 remains the

same in all the succeeding cycles, so that, in this example, we obtain the coefficient

of x2 in P3*(x) before we begin the second cycle; this simplification is due to the
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fact that both the points 0 and 1 are critical points, and this implies that the co-

efficient of x2 in P3*(x) is cos x/4 — 1. In the second cycle we obtain

x(2) = 0.705276652,       5„(2) = 0.001921449,       a/2' = -0.001921553,

ô2(2) = Sol2),        P3m(x) = 0.998078499 - 0.292893219x2;

and, in the third cycle,

x(3) = 0.705270859,        50<3) = 0.001921501,        a/3' = -0.001921500,

ô2m = ôo<3),       P3(3)(x) = 0.998078499 - 0.292893219x2.

Thus, to seven decimals, P3*(x) = 0.9980785 - 0.2928932x2, the maximum of

| cos (tt/4)x - P3*(x) | over -1 <i x Si 1 being 0.0019215.

We observe in this example that the entering polynomial approximation, P3 (x),

is so good that the maximum of | cos (7r/4)x — P3(0)(x) |, over —1 Si x Si 1, is

0.0019314, which exceeds the corresponding maximum of | cos (ît/4)x — P*(x) \

by less than 0.52 per cent.

Example 5. f(x) = cos (ir/2)x, n = 5.

There are two positive interior critical points, x* and x2*, and our first-cycle

approximations are Xi(1> = cos 7r/3 = J and x20) = cos x/6 = 3 /2. The Chebyshev

expansion of cos (7r/2)x is Jo(ir/2) — 2J2(tt/2)T2(x) + ■ ■ ■ , and our entering

polynomial approximation, of degree four, is P6<0)(x) = Jo(ir/2) — 2J2(ir/2)T2(x)

+ 2J2(w/4)T4(x) = 0.999396554 - 1.222743153x2 + 0.223936637x4. The values

of cos (ir/2)x — P5<0)(x) at the points 0, Xi(1), x2(1), 1 are

Soa> = 0.000603446,       «iH) = -0.000600024,

52(1) = 0.000593320,       53(1) = -0.000590037.

Since 0 and 1 are critical points, the coefficients of the approximating polynomial

Pik)(x), with which we end the fcth cycle (k = 1, 2, ••■) satisfy the relation

2ak) + ßik) + y{k) = 1, and this implies that the coefficients of P6*(x) satisfy the

relation 2a* + ß* + y* = 1. We find that

P6(1)(x) = 0.999403304 - 1.22796880x2 + 0.223990272x4.

In the second cycle we obtain

xi<2) = 0.497202761,       x2(2) = 0.864404535;

Som = 0.000596695,       5,(2) = -0.000596808,

S2m = 0.000596805,       53(2) = -0.000596697;

P6m(x) = 0.999403231 - 1.222796733x2 + 0.223990272x4.

In the third cycle we obtain

X!(3) = 0.497195260,       x2<3) = 0.864395279;

8o<3) = 0.000596769,       5,(3) = -0.000596772,

52(3) = 0.000596770,        53(3) = -0.000596770;

p6(3)(a;) = F5(2)(x) to 9 decimals.
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Hence, we conclude that

P6*(x) = 0.9994032 - 1.2227967x2 + 0.2239903x\

the maximum of | cos (t/2)x — Pb*(x) | over — 1 ^ x ^ 1 being 0.0005968.

The iterative procedure described herein for the determination of the Chebyshev

approximating polynomial P„*(x), of degree not exceeding n, over the interval

— 1 ^ x ^ 1, to a given differentiable function/(x) will converge if the difference

between/(x) and the initial approximating polynomial P„(0)(x) assumes extreme

values at n + 2 points of the interval — 1 ^ x ^ 1 and if, furthermore, these ex-

treme values alternate in sign. A proof of this based on the argument of Novodvor-

skii and Pinsker [5] has been given, and illustrated by a numerical example, in our

previous publication [2] on this subject.
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