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1. Introduction. The purpose of this paper is to report the results obtained on

Maniac I when that machine was used to solve numerically a set of difference

equations approximating the equations of two-dimensional motion of an incom-

pressible fluid in Eulerian coordinates. More precisely, the problem was concerned

with the two-dimensional motion of two incompressible fluids subject only to gravi-

tational and hydrodynamical forces which at time t = 0 were distributed as illus-

trated in Fig. 1.

This problem was discussed and formulated for machine computation by John

von Neumann and others. His own original draft of a discussion of the differential

and difference equations is given in Appendix I, and an iteration scheme for solving

systems of linear equations is given in Appendix II. In the main body of this paper

we shall outline the derivation of the equations employed by the computer and

refer to these appendices for detailed discussions concerning them where necessary.

Some of von Neumann's difference equations were modified in the course of the

work. The reasons for these modifications and their nature will be enlarged upon in

the course of the discussion.

2. The Equations of Motion and Boundary Conditions. We denote by x and y

the Cartesian abscissa and ordinate of a point in a fixed coordinate system in a

vertical plane oriented as in Fig. 1 ; that is, x and y are Eulerian coordinates. The

velocity of the fluid at this point at time t will be said to have x and y components

u(x, y, t) and v(x, y, t), respectively. The density of the fluid will be denoted by p,

the pressure by p, and the acceleration of gravity by g.

The system of equations describing the motion of an incompressible fluid subject

to the force of gravity in the vertical direction is then

/_ , s du   ,       du   ,      du 1 dp
(2.1) zt + u^- + vt-= —-£i

dt dx dy p dx

/oo\ dv   i       dv   i      dv ! dP i
(2.2) Ti + u-¿- + v^-=-^- + 9

dt dx dy p dy

(2.3) a' + u% + v£-0
dt dx dy

(2.4) ? + ? = 0dx       dy

Equations (2.1) and (2.2) represent the conservation of momentum, equation (2.3)

is the incompressibility condition, and equation (2.4) states the conservation

of mass.
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(0,0)

X=IAX

y= JAY

Fig. 1.—Initial density distribution. BB^ denotes the boundary separating the fluid  of
density p = 1 from that of density p = \ at time t = 0.

At any exterior boundary of the fluid the component of velocity normal to the

boundary vanishes. That is

(2.5) u cos (x, n) + v cos (y, n) = 0

where cos (x, n) and cos (y, n) are the cosines of the angles between the x axis and

the normal to the boundary and the y axis and the normal to the boundary, re-

spectively.

Along a curve across which there is a density discontinuity we must have the

component of the velocity normal to the curve continuous. That is, we must have

(2.6) [u] cos (x, n) + [v] cos (y, n) = 0

where

[/] = f(x+, y+) - f(x~, y~)

and x , y   and x~, y~ represent contiguous points on opposite sides of the curve of

discontinuities.

3. Discontinuities. The only discontinuities present in incompressible fluid

motion are density discontinuities and across these equation (2.6) must hold. In
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the calculation to be described, such discontinuities are not explicitly taken into

account. Indeed, it was one purpose of the calculation to see if this type of dis-

continuity could be followed in time from a plot of the density contours when no

special provision was made to provide for the discontinuities.

Initially the density distribution assumed was that given in Fig. 1. Some pro-

visions must be made in the difference equations to represent the spatial derivatives

of the density on the curve BB\ at time / = 0 (and at subsequent times on the

curve into which BBi moves). We shall discuss this point subsequently.

4. The Stream Function. It follows from equation (2.4) that there exists a

function \p called the stream function such that

(4.1) u =  — &, ,        v = \fsx

On an exterior boundary, equation (2.5) obtains and this may be written as

(4.2) — 4*y cos (x, n) + fa cos (y, n) = 0

If the equation of the boundary is given parametrically by

x = x(s),        y = y (s)

with

(IMS)'-i
then the direction cosines of the normal are

/       \ dy
cos (x, n) =  —f-

ds

i       \      dx
cos (y, n) = —

and equation (4.2) becomes

That is

dx dy

y¡/ = constant

on the exterior boundary. This constant may be chosen to be zero and the exterior

boundary condition becomes

(4.3) xp = 0

5. Equations Determining the Stream Function and Density. Substituting from

equation (4.1) into equations (2.1) and (2.2), we obtain

p(lpty   —   Mxy   +  IMW)   =    Px

p(lpu   —   M xx  +   txixy)   =    —Py  +  gP
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where the subscript denotes a derivative with respect to the variable indicated.

Differentiating the first of these with respect to y and the second with respect to x

and adding, we have

(5.1) (pptx)x +   (p&ty)y  =   Px(Ç  -    I)   -  Pyl  —   p7   =   —W

where

(5.2) 7 = fc*„ - Wxx

(5.3) 2I  =  tyxtyyy — 4>\A>xy

(5.4) 7 = *xX - \x*v

with

(5.5) X - *„ + +„

If we now set

(5.6) x = -#i

then

(5.7) — (pXx)x —  (pXv)y =   —«

where a> is given in terms of if/ and p by the right-hand side of equation (5.1), and

on the boundary

(5.8) X = 0

We may regard equation (5.1) and the boundary condition ^ = 0 as equations

for determining ^ and use equation (4.1) to define u. The pressure may then be

calculated from equations (2.1) or (2.2).

The density may then be determined from equation (2.3), which may be written

as

(5.9) pt = ypyPx — 4>xPy

The system of equations (5.6) through (5.9) defines the problem to be approxi-

mated by difference equations and to be solved numerically on the computer.

6. The Difference Equations. For any function a(x, y, t) let

(6.1) alj = a(xi, yjt th)

where

Xi = iAx i = 0, 1, ■ ■ ■ I — 1, /

(6.2) V,»jày i = 0, 1, ••• J- 1, J

f* ■ hAt h - 0f 1,2, •••

and / and J are integers. Occasionally indices i ± |, j ± 5, and h + § are used.

The difference equations we shall consider will involve quanties foj , Xi.i, and

Pi.i for h, i, and j given by equation (6.2). The mesh points with i  =  0 or

I (j = 0, 1, • • • J) or j = 0 or J (i = 0, 1, • • • /) are said to be boundary points.
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The remaining mesh points are called interior points. Equations (4.3) and (5.8)

define ^¿j = x¿,y = 0 for boundary points. Hence, we must give an algorithm for

determining ^¿,y for interior points and p¿,/ for interior and boundary points. This

algorithm involves the finite difference representation of equation (5.7) for interior

points and equation (5.9) for all points.

Equation (5.7) is replaced by

1        r h {    h h   \      .        h /h h \1
7^~\i l — Pi+i.J KXi+i.j — Xi.j) + Pi-hi \Xi,i — Xi-i.i)\

(6.3)
+ J- r h /     h h    \      \        h /    h h \~l h

-F^—ji [ — Pi.i+i KXi.i+i — Xi.j) + Pi.i-i \Xi,i — Xi.i-il] =  —Ui.i

for interior points, that is, for

l¿¿á / - 1

1 ¿ j ¡S¡ / - 1

where

c\   h h i        h
¿pi±h,i = Pi±l,j "T Pi.i

(6.4) 2pij±i = Pi.j±i + pi.j

and biij is formed from ^¿,y and p¿,>. as indicated in equation (A.14) of Appendix I.

Equation (5.6) is replaced by the equation

(6.5) ifô = 1¡u   - 2Atxh

for

A > 0

and by

(6.6) ^ = tfj - Atxh

when

h = 0

Equation (5.9) is replaced by the equation

w     »      (*L\ lipli * pUl)  if  (^>« <€
Pi" ~Pi,J:   W/j(pU - pU if (*,)»• fc.ö

Í(pI- - Ph-i)   if   (#.)SS* ^ o

w 1(pWi - pI)  if  (*,)#* < o

for interior points, where

2(*.)*$* = (iMft1 + «w)i,

and a similar equation defines (\py)i+j .

On a boundary such as y = «/, (^x)i.j = 0 from the boundary conditions, and

if initially p,-,/ = constant, it will follow from equation (6.7) that p,,/  =  p,-,/ .
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That is, the density discontinuity will not be able to reach the boundary j = J.

For this reason equation (6.7) does not seem to be a suitable one for determining

the time behavior of the density at the boundaries. It was replaced by

h+1       h        M ¡Pu'(fc)# - PÎ-M tytët,   if'   (h)u* <0l

r.i. \W _ p^ (^^     if     (^JJI  £  o

-A    (*.)î& - p5j (*.)# if  (vU?ie < oj

for boundary points. This equation is a finite difference representation of

Pt = —(pu)x — (pv)y

just as equation (6.7) is of equation (5.9).

Equation (6.7) differs from the finite difference form of equation (5.9) proposed

by von Neumann, namely

(6-9) Pi.j   = Pi.j + At(pt)lj + —5— (ptt)u

where (pt)ij and (pu)i,i are evaluated from the values of p»,,, ypi.¡ and xi.j by

substituting into, the centered finite difference representation of equation (5:9) and

the equation obtained by differentiating this equation with respect to / and sub-

stituting for pi from (5.9) and x for — \f/t.

In the early calculations the finite difference form of equation (6.9) was used.

However, it was found that near a discontinuity in the density p the values of p

increased on the high side of the discontinuity and decreased on the low side, thus

steadily increasing the size of the discontinuity. This unstable behavior did not

occur when equation (6.7) was used.

7. The solution of Equation (6.3). This equation is of the form of a set of linear

equations which may be written as

(7.1) AX = o>

where x is an unknown M[= (I — 1)(</ — 1)J dimensional vector, oj is a known

vector of this many dimensions, and A is a known M X M matrix.

In Appendix II von Neumann discusses iteration schemes for solving these

equations. He concludes that if A is a positive (or negative) definite matrix [the

matrix A of equation (6.3) is negative definite] with a largest proper value less

than or equal to b and a smallest one greater than or equal to a, then the "best"

(in the sense defined in Appendix II) iteration scheme is given by the equation

(7.2) „*■" = 26*+1 ̂ - n"-1 + ^-b (w - A,*)] + tT

where

(7.3)

6, = 1

, 1
bic+i =

2 - (i - tybk
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and

(7.4) e =    *
a + b

In order to apply this scheme, bounds for the lowest and highest proper values,

the numbers a and 6, must be determined.

Using the equations given by von Neumann in Section 15 of Appendix II, we

may set

(7.5)

A - I 1 !    8   "*      I 1 .    J    IT   1= 4a I .,   .„ sin --;. + -.—r^ sin  —- I
\(Ax)2        21      (Ay)2 2J)

AX. I       1 !   T      i 1 2   Tr\

= 46 i(Ax? C0S 27 + (AW C0S 27j

where a and 6 are lower and upper bounds, respectively, of the density. That is

(7.6) 0 < ä ^ pij ^ b

for all i and j.

8. The Flow Diagram. A condensed flow diagram is reproduced as Fig. 2. Be-

fore operation, initial values of \pij and p<j at time h = 0 are stored. The values

of Pi,j were prepared as follows: If i, j labels a mesh point which does not lie on

the density discontinuity, the value pij = p(x¿, yf). If x,, y¡ lies on the density

discontinuity, we define

Pi.i = h\p(xi, Vi+i) + p(xí , yj-i)]

\f/ij was taken to be zero initially. When the routine is started, part A is traversed,

which sets h = 0 and optionally prints out the initial values of \f and p in a format

uniform with subsequent results.

Part B computes the values of w.-.y, the right side of equation (5.1), for all

values of i, j corresponding to interior points, as needed in equation (7.1). The

box with the sole notation i, j indicates an induction loop repeatedly using the

program of the box to right of it for all appropriate values of i, j. All derivatives in

the formula for co¿,y are computed by taking the difference of the values of the

function at lattice points on each side, for example

(f*)ij = c£TZ itt+i.! — ift-Li)

except in certain cases near the boundary where one of these quantities does not

exist, and then a one-sided derivative, e.g.,

^ (ii+i.i - ti.i) for    i = 0, j = 0,1, 2, • • • , J

is used.

Part C computes n , the first term in the sequence of vectors n to be constructed

converging to x- If h = 0, then n is made zero, which is a reasonable estimate in

the case where the liquid starts moving from rest. After the motion has proceeded
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È
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Fig. 2.—Condensed flow diagram.

one or more time intervals, and so h >  0, then n   is given the value

Ü/AíK/-/-1)

which is approximately x    > a good start on a sequence to approach x*.

Part D solves equation (6.3) by means of the iteration and mean procedure

characterized by equations (7.2), (7.3), and (7.4). There is an i, j induction loop

inside a larger k loop. For each value of k the vector n +1 with components víj is

computed by equation (7.2), and max (víj — raj) is computed. If this maximum

is above a predetermined constant t0 , then k is increased by 1, bk+i is computed

from equation (7.3), and the i, j induction loop is entered again to compute the

next term in the sequence of r\ values. When a vector vk is obtained which is

sufficiently close to vk~1, then it is considered to be x\ and the control passes to

part E.

Part E computes the new values \l/h+1 by equations (6.5) and (6.6), and Part F

computes the new values ph+l by equations (6.7) and (6.8). The time index h is

then increased by 1, the results are optionally printed, and the control passes

again to Part B.
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The finite difference equations used in the numerical computation accprding to

the flow diagram are:

Part A. Part A has no formulae.

Part B. Part B is an induction loop for computing all interior points of onj as

a function of ^¿,y and pt,y. The formulae used are

(B.l) 2(Ax)(^)*,y = *Î+M - *Ui

(B.2) 2(Ay)(ty)hij = tf,j+l - ^,y_!

(B.3)        4(Ax)(Ay)(fxy)hj = f*+i,w - ^Li.y+i - f*+i,*-i + <A<-i,y-i

The next three formulae are computed as a five-cycle induction loop for (i1, f ) =

(i,j), (i + l,i), (* - 1,3), (i,3 + 1), (i,3 - 1)

(B.4) (Ax)2(^)î-,y- = 4>Uui> - tyl'.i' + ti'-l.j-

(B.5) (àv)'(*w)hi>,i' = 4><>.i>+i - tyh<'.i- + ti'J'-i

(B.6) (Ax)2XÎ-,y- « (Ax)2(^)*,,y, + a(Ay)2(^yv)hi,J,

where a = (Ax/Ay)2.

(B.7a) 2(Ax)3(X,)*,y = (Ax)2X*+1,y - (Ax)2X*_i,y   if   i * 1, I - 1

(B.7b) (Ax)3(Xx)*,y = (Ax)2X*+1,y - (Ax)2XÎ,y                     if   i = 1

(B.7c) (Ax)3(X,)*,y = (Ax)2X*,y - (Ax)2Xti,y             if   i = / - 1

(B.8a) 2(Ax)2(A2/)(XJÍ.y = (Ax)2\hJ+1 - (Ax)2X*,y_!   if    j * 1, J - 1

(B.8b) (Ax)2(Ay)(\y)hi,i = (Ax)2X*.y+i - (*x)Xj                     if   j - 1

(B.8c) (Ax)2(Ay)(\v)hij = (Ax)2X*,y - (Axfrl^             if   j = J - 1

(B.9) 2(Ax)(px)î,y  =   pî+i,y —  p<_i,y

(B.10) 2(Ay)(py)hij  =   pî,y+i  -  pî,y_i

8(Ax)2(Ay)1Ihi.i = [2(Ax)(^)î,y][4(Ax)(A2/)(^)î,y]

(B.ll) - 4[2(A2/)(^)î,y][(Ax)2(^)L]

8(Ax)(Ay)22Ihij = 4[2(Ax)(tx)hi.i][(Ay)2(4>yy)kij]

(B.12) - [2(A2/)(^)*,y][4(Ax)(A2/)(^1/)*,y]

4(Ax)3(Ay)3Ihij = [2(Ax)(^)hij][2(Ax)2(Ay)(\y)hi,j]

(B.13) - [2(A2/)(^)L][2(Ax)3(XI)î,y]

l&(Ax)3(Ay)Ji.j = [2(Ax)(p,)î,y][8(Ax)2(A2/)7*,y - 8(Ax)2(Ay)g]

(B.14) + a[2(A2/)(P!/)*,][8(Ax)(A2/)2 Ytj] + [4P*.y][4(Ax)3(A2/)7L]

where

-(g)'
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Part C. Part C is an induction loop, with respect to i, j of all lattice points to

compute the first trial value, ij,-,y, at cycle h for use in the iteration process. The

formula is

,^Ptó'-4)   if h>0
(C.l) AxAyvij **■{        At

0 if   h = 0

Part D. Part D is an induction loop with respect to k, with a smaller i, j in-

duction loop for each k. This is the solution of the difference equation by the iterative

and mean method. The actual formulae are

(D.l) 2pi+Lj = pij + pi+i,j

(D.2) 2pi_i,i = pij + p¿_i,j

(D.3) 2apij+i = a(pi,j + p,,j+i)

As before

~m
(D.4) 2ap¿,j_» = a(phij + p<,/-i)

(D.5) aij = 2pi+i,j + 2pi^ij + 2api,j+i + 2ap,,y_i

-2(Ax)3(Ay)(Ank)i,i = [2phi+i.i}[(*x)(Ay)vk+1j}

(D.6) + [2pUM^x)(Ay)vUj] + [2aphi.j+i}[(Ax)(Ay)r1k,j+1}

+ [2ap1,j.i}[(Ax)(Ay)r,k.i-l] - a,,j[(Ax)(Ay)r,kj]

(Ax)(Ay)(Fvk)i,i = [(Ax)(Ay)vkj] + ± ["   "    1 ([-2(Ax)3(A2/)(A/)i,í]

(D.7)

-i[16(Ax)3(A2/)coîJ])

where d=-, cf. Eq. (7.4).
a

f2fj4+1i[(Ax)(A2/)(^)i.}] - l(Ax)(Ay)vk-1}})

+ [(Ax)(A2/)^1]    if    fc = 0   |

.(Ax)(A2/)(^)ii3-    if    fc = 0 J

(D.9) 6! = 1 for    fc = 0

(D.8) (Ax)(Ay)
k+l I

(D.10) &*+! =-jl-— for    fc > 0
2 — (1 — t)lbk

Part E. Part E is an induction loop with respect to i, j and is used to compute

foj for all points as a function of rp'lj1 and x*.i

(E.la) tó1 = fÎT* -     2f*   . [(Ax)(A2/)xly] if   Ä > 0
(Ax) (A?/)
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(E.lb) .A+l       .h
Yi.i    = Yi.i —

At

(Ax) (Ay)
[(Ax)(Ay)xU if   h = 0

Part F. Part F is an induction loop with respect to i, j and is used to compute
A+l

pij as a function of ^¿,y, \//ij , and pi,y.

A+l A      .   At
Pi.i   — Pij T- -T-

Ax

(pij - pUj)   if   (*»)#< o

(F.la)

(^*)<.y

A+l a      .   Ai
Pi.j    = Pi.i "T

(F.lb)

(pî+U-pî.y)      if      rtïO

Ai J (Pi.j — P»,j'-i)    if    (#e)*,¿   = 0

S» ( (pî,J+i - pi,)  if  C^«)t5* < o

for   i = 0,1, ■ ■ ■ , I

j = 1,2, ■•• ,J - 1

P<,y(^»)u — P.-i,y(^»)<-i.i   if    (#*)w  < 0 I

Aa: l pW*,)£L - *«<*)#   if    (fc)# ^ 0 J
A« { Pi.i(i>»)i.i  — p¿,y-i(^)¡í-i    if    (^«)i,y  = ° }

" ̂  1 pÎ.#w(*.)î5+i - p«<*.)<5* if  (*.)« < o J
for    i = 1,2, ■■■ ,1 - 1

J = 0,J

9. StabiUty and the Choice of Ai. The behavior of the solutions of equation

(6.7) with regard to stability is similar to that of the corresponding equation in one

dimension with a constant velocity of propagation which will be taken to be positive.

Then the equation of conservation of mass becomes

pt = —upx

which has the finite difference representation

A+l h At       ,     h h     \
= py   — -r~ u\Pj   — Py-i)

Ax

or

(9.1)

where

(9.2)

A+l
(1

n    A     . A
a)pj + apj-i

uAt

Ax

Equation (9.1) has solutions of the form

2 (¿Ax - ßhAt)~j

where

exp •T H= 1 + a exp
l-irq

Ax - 1
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and hence

(9.4) I exp l-^ ßAt\ P = 1 - 4«(1 - «) cos2 * ̂

Thus ß will be real, and the equation will be stable if and only if

a ^ 1

That is, if

u

The value of At in the two-dimensional calculations was chosen so that

Ax

and

hM*i(

1*1*2
The units used were such that a change in Ai could be accomplished by changing

the value of the constant representing g the acceleration of gravity, and scaling \¡/.

It follows from equation (9.4) that up to second-order terms in Ax

m »-.[i-i(i-.g)g4.]

Hence the elementary solutions of equation (9.1) of the form of (9.3) may be

written as

(9.6) Pj = exp Fî2 (¿Ax - hAtu)~\ exp I-j 0^\ Ax2ha(l - a)l

The first factor of this expression may be written as

exp   —j- (x — ut)

with x = jAx and t = hAt. This is a solution of the differential equation. Thus

the second factor on the right-hand side of equation (9.6) shows how each of these

elementary solutions of the differential equation is distorted when that equation is

replaced by the finite difference equation (9.1).

Von Neumann in a personal communication to S. Ulam (cf. Appendix III of

reference 1) has used the term "pseudo-diffusion" for the distortion associated with

an initial distribution of density

, »       Í1    for   x ^ 0
Po(a° = \0    for    x < 0

He has shown that if this function is taken as an initial condition for the difference

equation (9.1), then the 0 values of p advance and the 1 values of p recede to the
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Fig. 3.—Gravity flow of two incompressible inviscid fluids at various cycles h.

right with a velocity

5x

Ht
= u

and at the same time a pseudo-diffusion-mixing region forms around the interface

of advance whose width is essentially measured by
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Since a was made close to one by the choice of At, the region of pseudo-diffusion

was small for the calculations reported here.

10. Computation Time. The results reported in Section 11 of this paper were

run on Maniac I with I = 15 and J = 38, that is, with 624 lattice points (518

interior points). The program required 300 words (600 orders of code exclusive of

print routines and exclusive of orders necessary for moving information to and

from the magnetic drum because of the limited electrostatic storage capacity of

Maniac I ). About 3750 words of dynamic storage were required.

The time required for running one time cycle of the program on Maniac I was

18 seconds for each iteration cycle plus 100 seconds for all the rest of the program.

The iteration process converges so as to give accuracy in an additional decimal

place every 10 minutes, so that one time cycle requires about an hour for six-place

accuracy (about 200 iterations) or a half hour for three-place accuracy (about 100

iterations). About 40 per cent of this time, however, is used in transfers to and from

the magnetic drum, so that this much time is to be charged to the fact that a

4000-word problem was being run on a machine with 1000-word random-access

memory capacity.

11. The Results. The results of the computations done on Maniac I are sum-

marized in Figs. 3, 4, and 5, where the lattice points occur at integer values of

5

j

+ 10

15

20

25

30
0 5 H 15

Fio. 4.—Velocity field at h = 10.
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Fig. 5.—Velocity field at h = 60.

the abscissae (i) and ordinates (j). In the first of these the locus of

P = M Pepper + piower) = 0.5625 is shown for various values of h, where hAt is the

time elapsed since the start of the calculations. Curves are shown for h = 0, 10, 20,

30, 40, 50, 55, and 60.
Figure 4 shows the velocity field at h = 10, as well as the loci p = 0.5625, and

p = 0.3875, and p = 0.7375. The latter two curves are the loci at which 30 and

70 per cent, respectively, of the initial difference in density are achieved. The band
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covered by these two curves gives a measure of the pseudo-diffusion phenomenon.

It is evident from Fig. 4 that the zone of pseudo-diffusion is less than one mesh

length in thickness.

Figure 5 is similar to Fig. 4 but in this case h = 60. Now the pseudo-diffusion

phenomenon has increased but on the whole is still confined to a region of the order

of two mesh lengths.

If Ax = Ay is taken to be 1 centimeter, then the total time covered by the

calculations (60 Ai) would be 0.339 second. The maximum speed attained by the

fluid is 0.0184 centimeter/second.

In Fig. 5 the density distribution in the lower right-hand corner seems to have

a somewhat anomalous behavior. This may be due to the fact that equation (6.8)

was only applied to the boundaries j = 0 and j = / and not to the boundaries

i = 0 and i = /.

12. Concluding Remarks. The most time-consuming part of the calculations

performed was that devoted to the computation of x»,y • The subsequent computa-

tion of the velocities Uij = — (\¡/y)ij and Vij = (yf/x)ij, and the density p¿,y took

relatively little time. However, the behavior of the density was most sensitive to

the type of integration formula used. It is not yet clear that the formulas actually

used were the best ones from the point of view of minimizing the zone of pseudo-

diffusion.
It is expected that the use of equation (6.8) for interior points as well as boundary

points or other devices will keep the region of pseudo-diffusion small enough so

that calculations on moving incompressible fluids with moving interfaces can be

made in Eulerian coordinates. If this conjecture would prove to be correct it would

be possible to use Eulerian coordinates and avoid the main difficulty of working in

Lagrangian ones; namely the necessity of introducing a new Lagrangian mesh

periodically because neighboring particles do not remain neighboring particles.

APPENDIX I*

The differential equations are:

Interior:

. (1) Ut + UUX + VUy =  —- px,
P

(2) vt + uvx + Wy = — pv + g,
P

(3) P; + Upx + Vpv   =  0,

(4) ux + vy = 0.

Boundary :

(5) cos (x, n) u + cos (y, n) v = 0.

* Although the material in Appendix I and Appendix II was left by von Neumann in the
form of handwritten notes and not in a form intended for wide distribution, the value of its
content is thought to justify its inclusion in this paper.
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From (4):

(6) U    =      ~4>y   , V = fX  .

(6) replaces (4).

Now (5) becomes:

-cos (x, n) fa + cos (y, n) \¡>M = 0,

i.e.,

¡Px'.ipy = cos (x, n):cos (y, n),

i.e.,

4/x, \py   is purely normal,

i.e.,

^tan = 0    (the tangential derivative of \p vanishes).

This means that

\f/ = C ( = constant)

along the boundary. Now replacing \¡/ by \p — C does not interfere with (6) («/-'s

defining relation). Hence C = 0 may be assumed, i.e.:

(7) * = 0

(on the boundary). (7) replaces (5).

Now only (1), (2), (3) are left. These become:

— lrV   +   ty   4>xy   —   tx  tyy   =    ~~   Px,
P

$zt   —   4>y 'Pxx   +   $x txy   =    — -  Py   +   g,
P

Pt  —  h Px + fà Py   =   0,

i.e.,

(8) Pttty  +   I(i, 4>y)\   =   Px ,

(9) Mm + t(i,i.) - g\= -Py,

(10) Pt = -I(t,p).

(8), (9), (10) replace (1), (2), (3). p can be eliminated between (8), (9), by

forming (8)„ + (9)* . This gives

{p[hy + /(#, *,)]}„ + {Ptttx + I(+, <M - g]\x = 0,
i.e.,

(11) (P^tx)x +   (phy)y  =   -{-gPx +  [pltt, *.)). +  \pIW, *y)U-

(11) replaces (8), (9) (with p eliminated).

Thus the entire system now consists of (10), (11) (interior) and (7) (bound-

ary), while (6) is merely a definition.

Rewriting (10), (11) and (6):

Interior :

(12) 14. = -M-g + Zfc *,])]„ + W(4>, +*)M,
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where

Lx  =   (pXx)x +   (pXy)y ,
(13)

Pt = —/(<£, p).

Boundary :

(14) \V = 0.

This suggests the following procedure: Put

(15) x = -*••

Then:

Let \¡/, p be known. Then \f/l, pt are obtained by this procedure: Put

(16) CO     =     {p[-g    +    /(*,   *.)]}.    +    \pl(4,,   *y)]y   .

Determine x from this elliptic boundary value problem:

(17) LX = co,

where

Ex   =   (pXx)x +   (pXy)y ,

and on the boundary

(18) X = 0.

Then:

(19) h = -x,

(20) pt = -I(*,p).

The expression (16) for co may be rewritten:

co = Px[-g + /(#, *,)] + P[I(4,, *.)], + pJW, *,) + p[I(t, *,)]„ .

Now

[/(*, *.)]. = I(*. , tx) + I(4>, *„) = /(*, #„),

[/(#, *«)].  -  /(*» , *»)  + /(*, *vv)   = W, *»)■

Hence

(21) co = Px[-g + /(*, *.)] + p7(^, **) + p/(*. ^xx + fc,).

Equation (21) replaces (16); it is more convenient for numerical calculation.

This is a more detailed expression for co:

(22.1) *   =   txx  +  tyy ,

(22.2) 7   =   Mxy   -   Mxx ,

(22.3) "I   =   txtyy   -   Mxy ,

(22.4) 7 = fc*, - Mx ,

(22.5) co = p,(f7 + 7) + p„7 + p7.
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In addition to this the right hand side of (20) is the negative of

(23) 7 = /(*, p),

where in detail

(24) 7     -     *xPy    -    ¿yPx   .

Thus the relevant equations are these: (17) with (22.1)-(22.5) and (on the

boundary) (18), and then (19) and (20) with (24).

Now introduce a finite lattice for x, y, t:

(25.1) x = Xi = i Ax, i = 0, 1,- • • , / — 1, /,

(25.2) y = yj=jAy, j = 0, 1,- • • , / - 1, J,

(25.3) t  = th m h At, h = 0, 1, 2,- • • .

Occasionally indices t db §, j =fc §, Ä ± § are also used. For any quantity

(26.1) a = a(x,y,t).

The following convention is used:

(26.2) cuj = a(xi,yj,th).

(17) and (22.1)-(22.5) are needed for i = 1,- • -, / - I; j - 1,- • -, J - 1
only. (18) is needed for the other i, j only: i = 0, I; j = 0, 1,- • -, / — I, J or

i = 0, 1,- • -, J - 1, /; j = 0, J. (19), (20) are needed for all i, j: i = 0, 1,- • -,
I - 1,1;j = 0, I,---, J - 1,/.

The entire system of equations can now be rewritten as follows:

\f/hij is defined for i = 1, • • ■, / — 1 ; j = 1,■ ■ -, J — 1.

phii is defined for i — 0, 1,- ■ -, / — 1, I;j = 0, 1,- • -, J — I, J.

In (A.1)-(A.14):*

i = 1, ■ ■ ■ , I - I;       j = 1, ■•• , J - 1.

(A.l)

fort 9*1,1-1;
for i = 1 omit term_;

for i = I — 1 omit term.

(A.2)

îorj * 1, J - 1;
forj = 1 omit term_;

for j = J — 1 omit term

(A.3) ($xy)\i = #<+ti+i — ̂ ¿-ij+i tf'.+ij-i + ^¿-iy-i

(&)ij   =   ̂ <+W  —  "Ai-li

(ÎÂï)ij = f</+i — ̂ «7-1

* The bar notation includes the required constant times Ax or Ay combinations.
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íovi 7¿ 1, I - l;j ¿¿ 1, J - 1;

for i = 1 omit terms_;

for i = I — 1 omit terms_;

for j = 1 omit terms_;

for j = J — 1 omit terms....

In (A.4)-(A.6):

(i',f) = (hi); (^+J-^> («- i.J). (U + Oi (j>J_t}l

tar i ft-1,1 — I-, j * 1, J — 1;
for t = 1 omit term_;

for i = / — 1 omit term_;

for j = 1 omit term_;

for j = J — 1 omit term ....

(Hence i' = 1,- • ■ , / - 1;/ = 1,- • • , J - 1.)

(A.4) (fc*)*'/' = $'+i/' - 2\b\j' + ft'-u'

tori' r*l,I - I;
for i' = 1 omit term.

for i' = I — 1 omit term_^^.

(A.5) (ire)i'y' = "Ai'y'+i — 2^<v + ^¿'y'-i

forj^ 1,7-1;
for/ = 1 omit term_;

for f = J — 1 omit term-

(A.6) XYy = (^xx)i'y' + «(&*)<'

where

-(0
(A.7) (Xx),y  —  X¿+iy —  X»_iy

for i! * 1, J- 1;
for i = 1 replace the index t — 1 by 1 and double the entire expression;

for i = I — 1 replace the index i + 1 by I — 1 and double the entire expression.

(A.8) (X¡/)ty  =  X¿y+i  — X¡y_i

iorj* 1, J - 1;
for j = 1 replace the index j — 1 by 1 and double the entire expression;

for j = J — 1 replace the index j -f 1 by J — 1 and double the entire expression.

(A.9) (px)iy = Pi+iy — P»-iy •

(A.10) (py)hij = Pti+i — Piy-i •

(A.ll) % = (h)UK)1i - (h)ÍÁ}xx)ha .

(A.12) Ttj = (h)hn(hv)hii - (h)UK)u ■
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(A.i3) Ta = (h)ii(\)n - (h)U**)*i ■

(A.14) ¿¡a   =  (px)n (—g + 7,-,) + a(py)a 2hj + Pa 'it/,

where g — (Ax)2 Ayg [for a, cf. (A.6)].

In (B.1)-(B.6):

»- 1,-- ,/- 1;      j = l,--- ,J - 1.

This definition of xa [i-e., (B.6)] is, however, implicit.

(B.l)

(B.2)

(B.3)

(B.4)

(B.5)

(B.6)

l-h -h       l     -J>
o~a — pa + Pi+iy

2.A
<Ti

3. h
a

i.h
Ci

5.A
9 i

_A       i     _A
— Pa + p¿-ij •

=   a(pij + p¿y+i).

= «(p¿y + Pt-y-i).

2_A/1-A       ,     2.A   x      . /3-A       i     4_/>   s

=    (  <T¿y  +     <Tij)   +  0(  (T»y  +     (Sa) [for a, cf. (A.6)].

l.fc     -h .     2_A     -h ,     3-A     _A ,     i.h     -h
Cij x¿+iy +  "a xi-n'T  on Xij+i +  °"ij Xij-i

b.h     -k       _    -h
°~a Xij — ^ij

for i w* 1,1 - l;j 9* 1, J

for i = 1 omit the term_

for i = 7 — 1 omit the term_^^, ;

for ,7 =  1 omit the term_;

for j = J — 1 omit the term....

The term with the double underscore should be C xa , the corrected xa ■

In(C):

i= I,--- ,7- 1;        i= l,--- ,J- 1.

, M-l , A-l
Va   = Va(C)

where

In (D.1-(D.3):

As in (C):

(D.l)

46 xa

b =
At

Ax Ay

0,1,-

b =

7-1,7;       i = 0, 1,- J - 1, J.

At

Ax Ay

2b(va+i + Va+i — Va-i — Va-i),

for îV 0, 7 and y ^ 0, J;

for î = 0, 7 omit the entire expression;
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for iV 0, / and J = 0 omit the terms and factor_;

for i r¿ 0, I and j = J omit the terms and factor.^._

(D.2) ß = V>(-4à+u - täu + ¿tiy + *£íí)

for i ¿¿ 0, I and j 9a 0, J ;

forj = 0, J omit the entire expression;

for i = 0 omit the terms and factor_

for j 5¿ 0, J and i = I omit the terms and factor.

A4
P»7 = p<y(l — a   — ß ) + ip<+iy(a + a) + 5P¿_iy(—a + a2)

(D.3) + ipî,-+i(/9 + /32) + èpîy-i(-/î + iS2)

+ i(p»+iy+i — Pi+iy-i — Pi-iy+i + p«-iy-i) — aß

for i ^ 0,1 and j' ?¿ 0, J ;

for z = 0, / omit the terms.

for j = 0, J omit the terms-.-

[Note: The points with i = 0, I and i = 0, J (together!) may be bypassed.]

Alternatively, in place of (D.3):

e = Sgn a, n = Sgn ß

Pa    = PU + (Pi+tj — P<y) I a | + (p»y+, p<y) I ß I

(D'.3) l     /   A A A i        *   \   I        I
+ (P>+«y+i — Pi+«y — P<y+i + Piy; | a |

fort ?¿ 0, /and J ¿¿ 0, J;

for i = 0, J omit the terms_;

for j = 0, J omit the terms_

[Note: The points with i = 0,1 and.?' = 0, / (together!) may be bypassed.]

APPENDIX II

1. The purpose of this paper is to find a rapidly converging iterative method for

the solution of linear equation systems, and quite particularly of those which arise

from the difference equation treatment of partial differential equations of the el-

liptic type [2nd order, s (= 2, 3,---) variables]. Sections 2-6 are introductory.

The method will be described and discussed in Sections 7-13. The application to

the (elliptic) differential equation case will be made in Sections 14-15. Some com-

parisons will be made. The results are summarized in Sections 11, 13, IS.

2. Consider a system of n linear equations in n variables, written vectorially:

(1) Ai = a.
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Here a is a known nth order vector, A a known nth order matrix, S the unknown

nth order vector. In order that the problem be meaningful, A must be non-singu-

lar. This will be assumed.

An iterative method is based on a correction step, which replaces a S, that

may not solve ( 1 ), by a Ç , that, in some suitable sense, should more nearly solve

(1). This correction step should be a linear operation F applied to the two nth

order vectors S, «, i.e., to the 2nth order vector {£, «}. It then produces the nth

order vector £ :

(2) ^ = 7^,«}.

It is convenient, to put in place of the nth order vector Ç1 again a 2nth order vec-

tor, namely {Ç , aj. In this case let us write E in place of 7^:

(3) It«) =#{*,«}.

Thus E is a 2nth order matrix.

Note that the linearity of F means that it can be written as follows :

(4) F{Z, «} = CrX + 77a,

where G, H are nth order matrices.

(2), (3), (4) mean that the 2nth order matrix E can be written as a 2nd order

hypermatrix of nth order matrices, as follows:

(5) E \o\i)
Here, 0,1 are the (nth order) zero and unit matrix, as usual.

3. A minimum requirement to be imposed on a correction step in the sense of 2

is this: If Ç* is the solution of (1), then the correction should leave S = S* un-

changed, i.e., produce S = £(= £*). This is the "weak" condition. A reasonable

further requirement is that if 3; is not a solution of (1) (Ç ^ Ç*), then the correc-

tion should change S, i.e., produce a J;1 j¿ S- This is the "strong" condition. That

is, the weak (strong) condition requires that \ = S* be sufficient (necessary and

sufficient) for Ç  = Ç.

By (2), (4) t = K means

(6) (7 - G)S = 77«.

The weak condition requires, that (1) imply (6), i.e., that always

(7 - G)i - HAS,

i.e.,

7 - G = 77A,
(7)

G = I - HA.

The strong condition requires, in addition to this, that (6) imply (1), i.e., in

view of (7), that

77A^ = 77«

imply

A^ = «.
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This means obviously that

(8a) H is non-singular.

Equivalently:

(8b) 0 is not a characteristic root of H.

Since A is non-singular, non-singularity of H is equivalent to that of HA, i.e.,

[by (7)] ol I — G; i.e., equivalent to this: 0 is not a characteristic root oi I — G,

or equivalently:

(8c) 1 is not a characteristic root of G.

To begin with, we will only stipulate the weak condition, i.e., (7).

4. The ordinary iterative procedure consists of repeating the basic step (2)

successively, and to expect that the sequence so generated will converge to the

solution i* of ( 1 ), irrespective of the starting point {,.

Disregarding for the moment the question of convergence, the sequence in

question, Ç°, Çx, Ç2, • • •, is defined by

f    -«, I
(9) r

?+1=Ftf, «i        (ft-* 1,2,•--).]

In view of (2), (3), the second equation of (9) can be written

[ç*+1;«î = E{t,a} (ft- 0,1,2,..-),

and hence (9) is equivalent to

(10) {?+1,a} = Ek+1H,a] (k = 0, 1, 2,---).

We know that for £ = f* [£* the solution of (1), cf. 3] all ? = £*, hence (10)

gives

a*, «} =£*{*:*,«}.
Hence (10) is equivalent to what is obtained by subtracting this equation from

it, i.e., to

U*-jM =EklZ-Z*,0},

i.e., in view of (5) to

(id ? - e = Gk(t - e) (k = 0,1,2,--.).

Note that (10) is an effective calculational procedure, while (11) is not, since

it contains the unknown Ç*; however, some proofs and evaluations can be more

advantageously based on (11).

It is well known that frequently the convergence properties of a sequence can

be significantly improved by replacing each element of the sequence by a suitable

mean of itself and the preceding elements of the sequence. In this sense, one might

replace the sequence k,s,T,'" by a sequence n , n , n , • • •, where

k

(12) nl = Zo«i' (Ä-0, 1,2,...),
1=0
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with a suitable set of coefficients ak¡. The characterization of the n as means (of

the S ) makes it natural to require

i

(13) Imi = l (fc = 0, 1, 2,---)-

This condition can also be obtained from the natural requirement that for S = S*,

when all S = S*, there shall also be all n* = S*- At any rate, we stipulate (13).

The characterization of the n* as means might also suggest the requirement that

all ak¡ 3: 0, but we will not impose it; indeed, the choice that we will later make,

and that seems to be particularly favorable, will violate this condition [cf. Sec-

tions 7-9, in particular (53)].

Instead of working with the coefficients ak¡ themselves, we can also work with

the corresponding polynomials

(14) Pk(Z) = Y.a*iZl (fc = 0, 1,2,-..).
¡-0

Then (13) becomes

(15) P,(l) = 1.

Thus Pk(Z) is a fcth order polynomial fulfilling (15), and (so far) subject to no

other restrictions.

Now (12) becomes, using (10) [and (15)],

(16) {n, «} = Pk(E) [S, «},

or equivalently, using (11),

(17) nk -S* = Pk(G) (S - S*).

The relationship between (16), (17) is similar to that between (10), (11), as dis-

cussed immediately after (11).

The broader convergence problem for the iterative-and-mean procedure is this :

Choose the akt, i.e., the sequence [Po(Z), Pi(Z), P2(Z),- ■ ■], [Pk(Z) a fcth order

polynomial fulfilling (15), cf. above], so that

(18) limn^i;*
k-*tc

for all choices of the starting point S- (18) can be also be written like this:

(19) limTXn* - S*) = 0,

where D(S) is any norm in the space of all nth order vectors S (i-e-, in n-dimen-

sional Euclidean space), which is equivalent to the ordinary (Euclidean) topology

of that space. We will make a specific choice of D(S) soon: Section 7 (30).

The ordinary iteration convergence problem (without means, cf. the beginning

of 4) corresponds to the choice Pk(Z) = Z (fc = 0, 1, 2, • • ■ ) for the sequence

[P,(Z),P1(Z),P1(Z),---].
5. We will now consider the broad convergence problem (iterative-and-mean

procedure, cf. 4 above) in more specific detail.
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(19) works with

(20) dk = D(nk - ?*) (ft = 0, 1, 2,---),

and its requirement is

(21) lim dk = 0 (for all Ç).
fc-»oo

Hence the relevant quantity is dk, and we must concentrate on estimating its size

(for all?) •
Combining (20) and (17) gives

(22) dh = D[Pk(G)w],

where

o = {, - r-

(22), (21) show that the convergence problem is actually one of the convergence

of the matrices Pk(G)(k —> °o ) to zero.

Thus the problem presents itself in this form: Given a matrix G, what condi-

tions must a-sequence of polynomials [Po(Z), P\(Z), P2(Z),---] fulfill so as to

have

(23) lim Pk(G) = 0.
k-*x

The answer is well known: Let X¿ (i = 1,- • -, p, of course p. ^ n) be the char-

acteristic roots of G, and let e¿ ( = 1, 2, • • • ) be the order of the elementary divisor

of G that corresponds to X¿. Denote the pth derivative of Pk(Z) by Pkip)(Z).

Then the necessary and sufficient condition for the validity of (23) is this:

(24) lim PkM (X.) = 0
A-*oo

for all those combinations i(= 1,- • -, p,), p ( = 0,1,- • •) for which e¿ > p. When

all e, = 1, then (24) becomes simply

(25) limP*(X<) =0 (i = 1,---, p.).
h-*<x>

For a Hermitian G, in particular, this is always the case.

We saw in 4, that the Pk(Z) are subject to the condition (15): Pk(l) = 1.

Hence (24), i.e., (23), is unfulfillable if some X< = 1, i.e., if 1 is a characteristic

root of G. In other words: The condition (8c), i.e., the strong condition of 3, is

reimposed for this reason. [This could have been seen directly too: If that condi-

tion fails, then for some Ç ^ Ç* there is £x = £, hence all í¡/ = 3;, hence all n = Í,

and so lim¡^» n   = £ ^ £*, contradicting (18).]

If, on the other hand, (8c), i.e., the strong condition in 3, holds, i.e., if all Xt- ¿¿

1, then it is not difficult to see that (24) and (15) are compatible. Indeed, even a

fixed P(Z) [for all Pk(Z) with ft S: the precise order of P(Z), which is 2^, e , cf.

below] will do:

p(Z) = cIKz-\i)°,
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with c determined from (15), meets all requirements. This, however, is of small

practical importance, since the X< may not be known, and the above expression for

P(Z) may in any case be too complicated for actual evaluation. If it is only known

that the X, lie in the interior of a certain (bounded and closed) domain A, then a

sequence [P0(Z), P\(Z), P2(Z),---] of the desired kind can still be specified, if

(and only if) A does not separate 1 from w. We will, however, not go here into this

matter any further.

6. The ordinary iterative procedure corresponds, as we observed at the end of

4, to the choice Pk(Z) = Zk. Hence Pkw(Z) = k(k - 1) • • ■ (fc - p + 1)Z*~*.

Therefore the convergence criterion (24) requires precisely, that all | X¿ | < 1. We

state this explicitly:

The ordinary iterative procedure converges (cf. the beginning of 4)1

(26)
if and only if | X | < 1 for all characteristic values X of G.

As we saw in the last part of 5, this condition is by no means necessary for the

convergence of some suitable iterative-and-mean procedure. We will nevertheless

limit ourselves to this case:

(27) | X | < 1    for all characteristic roots X of G.

In addition, we will assume that G is Hermitian, because this covers certain

important applications, and permits the employment of some rather effective

methods. We restate this:

(28) C7 is Hermitian.

(28) implies that all characteristic roots (or characteristic values) of G are

real. Hence (27) becomes this:

(29) — 1 < X < 1    for all characteristic values X of G.

Under these conditions the ordinary iterative procedure, i.e., the choice (20),

Pk(Z) = Zk (cf. above), is adequate, i.e., it guarantees convergence. We wish,

however, to determine that iterative-and-mean procedure, i.e., that sequence

\Po(Z), P\(Z), P2(Z),- ■ ■] for which this convergence is (uniformly) fastest. We

will, therefore reconsider the convergence problem under this aspect, subject to

the restrictions (28), (29).

7. We want to choose the sequence [Po(Z), Pi(Z), P2(Z),- ■ •] so as to obtain

the uniformly fastest possible convergence. This convergence is to be taken in the

sense of (21), i.e., we want to make for each fc the dk of (20) as small as possible.

¡By (22) this means that we want to make D[Pk(G)tù] as small as possible.} This

should be true, in some suitable sense, uniformly—i.e., uniformly in the variables of

(22). These variables are [since fc is given and Pk(Z) is being looked for] G and

<ù( = S — S*)- Let us therefore examine the meaning of uniformity with respect to

G and <o.

First, since we are now dealing with a situation in which a Hermitian matrix,

G, occupies a central role, it is reasonable to prescribe that the norm D(S) be the

Euclidean norm

(30) d(s)= yèifcf
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(£1 ,• ' ', £« are the [complex, numerical] components of the [nth order] vector Ç).

(Cf. the remark following (19) in 4)

It is also useful to introduce, for a general (nth order) matrix K, the concepts

of the "upper bound" | K |„ and of the "lower bound" | K \i :

(31a) | K |, = Max ^^ = Min [C such that D(K%) g CD(í)],
í^o     D(Z)

(31b) | K |, = Min ̂ Öp = Max [C such that D(K& ^ CD(Ç)].
£*o     D(K)

Second, let us consider the variability of G. G is subject to the requirements

(28), (29), i.e., it must be Hermitian and fulfill (29). It is clearly logical to make

the requirement (29) with uniformity, i.e., to require for a suitable e > 0 that

(32a) -(1 - e)  ^ X ^  1 - e

for all characteristic values X of 67, or equivalently

(32b) | G |„ ^ 1 - a.

Third, let us consider the variability of «. We want to make D[Pk(G)u>] as

small as possible (cf. above), oi = 0 is uninteresting, and it is plausible that we

should want to make the ratio D[Pk(G)u]/D(a) uniformly small for all &>, i.e., to

make

Max^>»]
„^o       D((ú)

small. This means, by (31a), that we want to make | Pk(G) |„ small.

Combining the second and the third remarks, we see that we want to make

| Pk(G) |u uniformly small for all Hermitian G that fulfill (32a) [i.e., (32b)]. That

is, we want to minimize

dk =    Max    (| Pk(G) |„) = Min {C   such that for all a> and all Hermitian

iffJSi-V1 G with | G \u ¿ 1 - «, D[Pk (G)«] g CZ)(a>)} .
(ooj G  Hermitian

Now | Ph(G) \u is the maximum P*(A), where X runs over all characteristic

values of G. In view of the equivalence of (32a) and (32b), the precise limitation

on these X is — (1 — t) ^X^ 1 — e. Hence the first part of (33) can be rewritten

(34) dh =        Max        (\Pk(\)\).
-(l-é)gXg(l-í)

Thus we are looking for that fcth order polynomial Pk(Z), fulfilling (15),

Pk(l)= 1, for which

Max        (\Pk(Z)\)
-(l-i)SZil-i

is minimal. Equivalently: We are looking for that ftth order polynomial Qk(Z),

fulfilling | Qk(Z) | á 1 for all Z in -(1 - «) ¿ Z £ (1 - e), for which Qk(l)
is maximal. Indeed, for this Qk(l) clearly

Max       (\Qk(Z) |) = 1,
-(1-OgZgl-e
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and

(35) Pk(Z) . |g ,

(36) Max        <|A(Z)|) -s™,
-(l-í)SZS(l-í) W*:(l)

Again equivalently: We are looking for that fcth order polynomial Rk(Z), fulfilling

| R(Z) | g 1 for all Z in -1 ^ Z ^ 1, for which Rk[l/(l - «)] is maximal. Clearly

(37) Qk(Z) ■*(r^)
8. The last problem in 7 [the one relative to Rk(Z)] is classical. It has been

solved by Chebyshev [2]. The Rk(Z) in question is the fcth Chebyshev-polynomial,

defined by

(38) Rk (cos u) = cos (ku).

It is clear from (38) that Rk(Z) is the fcth order polynomial, and that — 1 ^

Z ^ 1 implies | Rk(Z) | ^ 1, as desired. Putting u = iv gives Rk(Ch v) = Ch(kv),

putting e° = x gives Rk[%(x + x-1)] = J(x + x~ ), and putting x = Z + -\/Z2 — 1

gives

(39) Rk(Z) m í[(Z + y/W^lY + (Z + VZ* - I)-*].

Now putting Z = 1/(1 — e) gives

Combining (37) with (35), (36) gives:

(41) P4(Z)

7i (r^)'

Max        (\Pk(Z)\) =
(42) -(i-«)ázsi-f

Ri (r^)
It is worthwhile to compare the efficiency of this scheme with that of the ordi-

nary iterative procedure (without means), i.e., with the choice Pk(Z) m Zk (cf. the

end of 4 and the beginning of 6).

Consider first the present choice for Pk(Z) [i.e., (41)]. The logarithm of the

first term in the bracket on the right hand side of (40) is

ln/l + V(2^,fc)

i.e., for e « 1 it is ~ -\/2ê-k. The logarithm of the second term is correspondingly

'~ — y/2t-k. Assume furthermore y/2e-k ^> 1, then the first term is dominant,
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i.e.,

with Ai ~ \/2~l-k, and so by (42)

(43a) Max        (\Pk(Z) |) = 2e-"1
-(l-i)izsi-i

with hi ~ V2^-ft, if e « 1, \/2«-ft » I-

Consider next the choice Pk(Z) = Zk. Then clearly

Max        (\Pk(Z) |) = (1 - e)k.
-(I-í)SZSI-í

The logarithm of the right hand side is ln(l — e)-ft, i.e., for « « 1 it is ~ e-ft.

Hence in this case

(43b) Max        (\Pk(Z) |) = e~hi
-d-OSZgl-«

with h2 ~ e-ft, if t <K 1.

Comparing (43a) and (43b), and remembering (34) shows that the speed of

uniform convergence, i.e., the speed of decrease of dk, compares as follows for the

choices of Ph(Z) under consideration—namely, the "optimum" choice of Pk(Z)

[i.e., (41)], and the "ordinary" (no means!) choice of Pk(Z) (i.e., =■ Zk): In the

first case the increase of ft that e~ -folds dk (asymptotically!) is Aft = l/\/2ë, in

the second case that increase is Aft = 1/e. Thus the first choice accelerates the con-

vergence over the second choice in the ratio y/2~l: e = s/2/t.

9. Let us now return to the definition (38) of Rk(Z) [on which the "optimum"

definition (41) of Pk(Z) is based]. (38) is transcendental, the equivalent (39) is

irrational. It is desirable to replace these by a rational definition. Such a definition

obtains, in the form of a two-step recursion, from the identity

cos [(ft + l)w] -\- cos [(ft — 1)m] = 2 cos u cos (ku).

In view of (38) this gives

Rk+i(Z) + Rk-i(Z) = 2ZRk(Z),

i.e.,

(44) Rk+i(Z) = 2ZRk(Z) - Rk^(Z) (ft = 1, 2,- • •).

This relation, together with the "starting conditions"

(45) Ro(Z) = 1,       Ri(Z) = Z,

defines the Rk(Z) completely.

Now (41) permits us to pass to Pk(Z). Then (44) becomes

7        Rk ( Ï-) Rk~1 ( Ï- )

Pk+i(Z) = 2 -^-^-^ Pk(Z)-Y-4 Pk-i(Z),
1 — e

Rk+1\T^ry Rk+1\r=i)
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i.e.,

(46) Pk+i(Z) m 2Z -^±i- Pk(Z) - ak+1 ak P*_i(Z),
1 — e

where

rJ^-)
(47) a, = -*>

Ri (rh)
Putting Z = 1/(1 - e) in (44) and dividing by Ä*[l/(1 - «)] gives

(48) — = -^— - ak.
ak+i       1 — e

Through (41), (45) becomes

(49) Po(Z) m 1,        PX(Z) m Z.

Also, (45) gives

(50) ax = 1 - e.

It is convenient to introduce

(51) &,--$-.
1 — «

Then (50), (48) give

(52a) bi = 1,

(526) bk+, = 2 _ (1X_ eyh (k = l,2,...).

Next, (46) gives

Pk+1(Z) m 2bk+1ZPk(Z) - (1 - t)2bk+lbkPk^(Z).

Owing to (52b)

(1 — «)  bk+i bk = 26i+1 — 1,

hence the above equation can also be written like this:

(53)        Pk+i(Z) = 2bk+1 \ZPk(Z) - 7Vi(Z)] + Pk^(Z) (fc = 1, 2,- • •)•

Finally by (34), (42)

hence by (45), (47)
dk = ai ■ • ■ ak,
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and so by (51)

\*
(54) dk   =   (1   -   €)*&!   •••   bk.

10. We can now pass from the Pk(Z) to the nW), of course with the help of (16).

We replace Z by the 2nth order matrix E in both equations of (49) as well as in

(53). Thus in all three equations both sides become 2nth order matrices. We apply

these to the 2nth order vector \S, a). In this way three equations obtain, each one

having 2nth order vectors on both sides. These are as follows:

From the first equation of (49), using (16):

in", «!   = [S, <*},
i.e.,

(55) n° = S-

From the second equation of (49), using (16):

{it1, «} = Ä|i «j,

i.e., recalling (2), (3):

(56) n1 = F{S,a}.

From (53), using (16):

{„^\ «)  = 2bk+1(E{nk, «} - in*"1, «}) + in*"1, «},

i.e., again recalling (2), (3):

{nk+1, «}  = 2bk+1[(F{nk, «], «) - |«M, «}] + |nM, «}

= 2bk+1(F{nk, «] - n*"1) + in*"1, «I.

i.e.,

(57) nfc+1 = 2bk+1(F{nk, «} - O + m*-1, (fc = 1, 2, • • ■)•

11. We have obtained an inductive definition of the sequence n°, n , n , • ■ • .

This is based on another, inductively defined, (numerical) sequence bi, b2, ■ • ■ .

Actually the two inductions can proceed concurrently. We will now restate these.

The bk induction is given by (52a), (52b) :

(la) h = 1,

(lb) bk+l = 2 _ (11_ e)%k (fc=l,2,...).

The n induction is given by (55), (56), (57):

(Ha) n° = S,

(lib) n1 = F{S, «1,

(He) n*+l = 2bk+1(Fink, «}  - nM) + n*"1 (fc = 1, 2, • • • )■

We also restate the formula (54) for dk :

(III) dk = (1 - 0*6i- ■ -bk.
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This can be expressed inductively:

(Ilia) do = 1,

(Ilia) dk+i = (1 - t)bk+idk (ft = 0, 1, 2, • ■ ■).

It is worthwhile to compare this process, and in particular its central piece (II)

(which produces the sequence n , n , n , ■ • ■ ), with the ordinary iterative process,

i.e., with (9) (which produces the sequence £°, £x, £, • • •). (II) and (9) give the

same n and Ç for ft = 0, 1, but they differ for ft = 2, 3, • ■ -, i.e., for nk+1 and

£k+1 for ft = 1, 2, ••• . Even here the first step in forming n*+x is the same as the

(only) step in forming £*+1, the application of the original correction step F{ ■ • -, a)

(cf. 2). In forming n*+x, however, this is followed by the further step 2bk+l ( • ■ ■

— n - ) + n ~ . This is clearly an extrapolation from n ~ with the (excess) factor

26*+i - 1. Note, that (I) implies § < b¡ < 1 (for all I - 1,2, • • • ), hence 0 < 2b¡ -
1 < 1. Thus the extrapolation (excess) factor lies between 0 and 1.

Now it is by no means unusual that an iterative correction method is improved

by combination with extrapolation steps. The noteworthy circumstance is rather,

that, in going from n* to n +x, the extrapolation should issue from n*-1. It is also of

interest, that a "universal" and "optimum" sequence of extrapolation factors

(i.e., the 2bk+i — 1) could be determined [by (I)].

12. The procedure summarized in 11 is complete, but it is based on the knowl-

edge of a Hermitian G fulfilling (32a) [or equivalently (32b)]. Thus there remains

the problem of constructing such a G.

More precisely, we need the F of (2), i.e., the G, H of (4). These are linked by

the relation (7), which we restate:

(58) G = I - HA.

A is, of course, given. Thus H is arbitrary, it determines G by (58), and this G must

then be Hermitian and fulfilling (32a). These conditions can also be stated in terms

of / — G = HA: The Hermitian character of G is equivalent to that of HA. (32a)

is equivalent to

(59) e ^ X S 2 - e

for all characteristic values of X of HA.

We repeat: We are looking for an H that makes HA Hermitian and fulfills (59).

We will now describe two procedures that achieve this:

First, put

(60) H = aA* (a > 0).f

Then (58) gives

(61) G = / - aA*A.

HA = a A* A is obviously Hermitian, it is also positive-definite. Hence the smallest

characteristic value of HA is | aA*A \¡ = a\ A*A \t = a(\ A |;)2, and the largest

characteristic value of HA is | aA*A |u = a\ A*A \u = a(\ A \u)2. Consequently

t A* is the "adjoint" of A, i.e., its complex-conjugate transposed.
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(59) means that

(62a) a(\A\t)2^e,

(62b) a(|A|u)2 g 2- e.

Assume that we know that

(63) 0 < a ^ | A |, g | A |„ g b,

i.e., so that a, b are known. Then (62a), (62b) can be guaranteed by prescribing

(64) aa2 = t,        ab2 = 2 - «,

i.e.,

(65)

(66)

Now put

a2 + ¥ '

2a2

a2 + ¥ "

(67) / = ?
a

Then (66) becomes

(68)
f2 + 1

Second, assume that A is Hermitian and positive-definite. In this case put

(69) H = ai (a > 0).

Then (58) gives

(70) G = I - aA.

HA = aA is clearly Hermitian and positive-definite. Hence the smallest charac-

teristic value of 77A is | a A \t = a\ A \¡, and the largest characteristic value of

77A is | a A |u = a | A |„ . Consequently (59) means that

(71a) a\A [,£ e,

(71b) a| A |« á 2 - «.

Assuming again the validity of (63), we can guarantee (71a), (71b) by prescribing

(72) aa = «,       ab = 2 - e,

i.e.,

2
(73)

(74)

' a + b'

2a

a+b'
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Using (67) again, (74) becomes

(75)
/+1'

13. The results of 12 deserve restatement and some comments. The common

assumptions of both parts of 12 are (63), (67) :

(IVa) 0 < a ^ ¡ A |, ^ | A \u g b,

(IVb) / - i .
a

The result of the first part is contained in (60), (61), (65), (66), (68) :

(Va) H = aA*

(Vb) G = I - aA*A,

2
(Vc)

a? + b2'

(Vd)
a2 + 62     P + 1 '

A being otherwise unrestricted.

The result of the second part is contained in (69), (70), (73), (74), (75):

(Via) H = al,

(VIb) G = I - aA,

(Vie) a = -^— ,
a + o

(VId)
a + b     /+ 1'

A being assumed Hermitian and positive-definite.

(Va), (Vb) show that the first case is related to the iterative "steepest descent"

methods; (Via), (VIb) show that the second case is related to the iterative "re-

laxation" methods.

Our derivation makes it plausible why the former are of universal applicability,

while the latter are limited to Hermitian and positive-definite matrices—i.e., if the

problem arises from the difference equation treatment of partial differential equa-

tions of the elliptic type [2nd order, s ( = 2, 3, • • • ) variables, cf. 1 and again 14],

to the self-adjoint, elliptic case.

In general/ ïi> 1. Then in the first case e ~ 2f~ [by (Vd)], and in the second case

e ~ 2/~x [by (VId)]. Thus the first case gives a much smaller e than the second case,

i.e., in view of the remarks at the end of 8, a much slower convergence of the itera-

tive process.

This observation illustrates the general experience that whenever relaxation-

type procedures are applicable, the convergence is significantly faster than other-

wise.



180 BLAIR,   METROPOLIS,   VON   NEUMANN,   TAUB   AND  TSINGOU

14. We now pass to the consideration of the difference equation system for an

elliptic partial differential equation [2nd order, s ( = 2, 3, • • • ) variables].

Let the partial differential equation be

(76) _¿*(«<|í) = a,
S3 dXi \     dXif

where X\, ■ • ■ , x8 are the independent variables, £ ■ £(xi, ■ • • , xs) is the dependent

variable, and a1 = al(xi, • ■ ■ , xs), (i = 1, • • • , s) and a = a(xi, • • • , xs) are

known functions of Xi, • • • , xs. Also

(77) 0 < a* ̂  aXx!, • • • , x.) S S* (i = 1, ■ • • , s),

the äl, b% (i = 1, • • • , s) being known constants. Finally the domain of the Xi, • • • ,

x, is

(78) 0 ^ x, ^ Li (i = 1, ••• , s),

and the boundary condition is

(79) £ = 0   for   Xi = 0   or   L{ (i = 1, • • • , s).

In order to pass to difference equations, we introduce a lattice

(80) »-*,*(*-$.

where in some cases

(80a) ,,• = 0, 1 ■ • • , Ni - 1, Ni,

in others

(80b) Vi - 1, • • • , Ni - 1,

and in others again

(80c) Vi = J,!, ••• ,Nt: - h (»'- 1, ••• ,*).

Of course, JV, = 2, 3, • • • , and it expresses the fineness of this lattice in the

x¿-directiori.

We write

(81) £(xi, ■•• x.) = £„...,, ,

using (80a). These &,..-«, are the unknowns, but since (79) gives

(82) 6m..* = 0   for    Vi = 0, Ni (i = 1, ■ • • , s),

the unknown character is actually restricted to (80b).

It is convenient to use with a' (80b) for the t/¿ withj j¿ i, and (80c) for r¡i :

(83) a\xi, ■ ■ ■ , x.) = <...,, ,

and for a (80b) throughout:

(84) <x(xi, ■•• , xs) = «„...,, ,

these being known quantities.
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Now (76) is best stated for (80b). It becomes

r (Ni\ r ' (t t >

— aVl...ri—i...,lt\çvi...qi...qe      ç,j..-iü—i--'ii,/! = ai,i•••!,, •

We can view (85) as the equivalent of (1), with the following provisos: The

complex vi, • • • , Vs, according to (80b), stands for the vector-index in (1). Hence

the order of the matrix A is

(86) r, = fi (Ni - 1).
i

The ¿,r..,, are therefore the components of the (unknown) vector Ç, the a,,...,, are

the components of the (known) vector a. The left-hand side of (85) then defines

the (known) matrix A. Hence

(87) A = ±(^jAi,

where the matrix Ai is defined by

Ai = e,
(88) Vti-Ta   =        a1i-"i!i+i---';j(Ç!>i---i.+l---ii Km- •■!?»■■ -i),)

-rCt^j...,,_ i'.-n, \cin- ••!!,■•• -ij, 6»l'"?<—l'"l»/-

Furthermore, clearly

(89) Ai = Bí*Bí

[cf. footnote on page 177, where

st = e,
(90) +       ^n-

In order to apply the results of 13, we now need estimates of | A \¡, \ A |„ , in

accordance with (IV) in 13. From (87)

(91)

^i.sg(0i^i.
From (89)

\Ai\t = (\Bil)2,)

\Ai\u = (\Bi\u)2.)

Finally, designate A{, B{ with a^...„...,, = 1 [cf. the remark preceding (83)!] by

A*, Bi. Then clearly

| Bilí iï Vä*|ßi°|i,]
(93) /-    »     rI a.- I« á V5' I £, I« • J
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Combining both sides of (93) with (92) gives

(94)
\Ai\t Sí ü'lAfU,

| Ai |„ ̂  V | At* I,

and combining (94) with (91) gives

(95)

Now consider A,0. Applying (88) with aj,...«...,, = 1 shows, that the role of the

Vi, j ^ *, is now irrelevant in determining | A¿° |j, | A,0 |u . Hence we may write in

place of (88)

,    s A°s = S+, \
(96)

Sv¡  — — íu¿+i + 2£,,. — £,;_! . J

This operator is Hermitian, its characteristic vectors are the Cm*(m¡ =  1, • • • ,

Ni - 1) with

(97) C = sin
irmi rji

the characteristic value of S™' being

(98)

Hence

(99)

7rm¿
X" = 2 - 2 cos -r=+ = 4 sin

Ni
2 irTOi"  2F<"

Ai01, = Min Xm< = X1 = 4 sin
2     TT

2Ni'

Ai0 L = Max Xm< = XN,_1 = 4 cos2 ^=- .
mi 2Ni J

sin
2      TT

(100)
27V,-'

cos.2      »

2JVi"J

Combining (95) and (99) gives

M|,a4§*(rf)si

M|.S4g5,(0

Hence we can put in (IVa)

sm
2      TT

(101)
2tf(
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Therefore (IVb) gives

2     Tf
C0S   9V

(102) / = í=í JJV<
•    2      W

sm Wi5<<0
If

(103) Max ^ = M, Max  AT¿ = JV,

Then (102) gives

f < M cot2
2iV

(104) /SI M cot2

and, since

a fortiori

7T X IT 2N
tan2^=2^'       COt2^ = T

(105) /á-.Mf,
7TZ

Now (Vid) in 13 gives e = 2/(f + 1) and the remarks at the end of 8 give for

the error-e_1-folding increase of fc (asymptotically!)

i.e..

(106) Afc~iv?-

Hence, in view of (105),

(107) ak<-VMÑ-
IT

IS. We restate the results of 14. The elliptic partial differential equation is given

in (76), the subsidiary conditions in (77)-(79), the lattice is defined in (80) and

(81)-(84), the difference equation system in (85). We do not restate these.

The a, b, f oí (IV) in 13 are given in (101), (102):

(Vila) a = 4¿ai(0sin2^,

(Vllb) b = 4 ¿ h (^Y cos2
2Ni'

xLi)C     2Ni
•    2     T

sm Wi
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If

(Villa) Max     2-Ä, Max     Nt = Ñ,
1=1, •••   ,8      ai i = l,...,B

then

CVIIIb) f <  M cot2 -^r ^ A MJV2.

Los Alamos, New Mexico
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