
On Projective Planes Of Order Nine

By Marshall Hall, Jr., J. Dean Swift and Raymond Killgrove

1. Introduction. There are four known projective planes of order nine: the de-

sarguesian plane; the plane coordinatizable by a Veblen-Wedderburn system which

is not a field; its dual; and a self-dual non-desarguesian plane. The last was orig-

inally found by Veblen and Wedderburn [4] ; its structure has been generalized by

Hughes [3].

Each of these planes was known to have an elementary abelian addition in an

appropriate ternary ring. A natural question was whether or not there were

any other planes with this property. A search was made partly by hand, partly by

machine for such planes. The result of the search is that no further planes exist

with this property but that the three non-desarguesian planes all may be coordina-

tized in more than one way with an elementary abelian addition. For notation and

terminology used in this paper the reader is referred to [1].

2. The additive pencil and lines consistent with it. In a plane of order 9 with an

elementary abelian addition we may assume initially three pencils of finite lines

x = c, y = c, and y = x + c, c = 0, 1, • ■ • , 8, where the addition in the last pencil

is that of the elementary abelian group. Specifically this last pencil may be repre-

sented by the latin square:

012345678
120453786
201534867

345678012

(2.1) 453786120
534867201
678012345
786120453
867201534

where, as is customary, in each row of the square : yayiyiyzyuMJuyiys is to be read as

the second row of the permutation :

(22) /0     1     2     3     4     5     6     7     8\

\2/o    2/1    2/2    2/3    2/4    2/5    2/6    2/7    2/s/

and represents a line whose nine finite points are (i, yi) i = 0, 1, • • • , 8.

In our search it is sufficient to find the affine planes of order nine ; the extension

to projective planes by adding the points at infinity is trivial.

It turns out that there are 2241 lines consistent with the pencil (2.1), these being

represented by permutations (2.2) which do not have as many as two points (i, z/¿)

in common with any one of the lines of (2.1). In practice the lines for which i/o = 0
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are first found. These are then subjected to the permutations given by (2!) to

obtain the full list. If L is a consistent line and Aa is a permutation of (2!) then

LAa is also and conversely. Indeed if Lx and L2 are any two lines and P any permuta-

tion, the number of intersections (coincidences) of Li and L2 is obviously equal to

the number for LiP and LzP. In our case the group goes into itself under multiplica-

tion by A a so that the consistency is maintained.

The discovery of the 249 lines through (0, 0) may be done by hand or by simple

mechanical sorting procedures. To check and to facilitate the consideration of other

possible structures a program for the automatic computer SWAC has been written

which will determine the lines consistent with any square which is the table of a loop.

The problem of the search is now to find sets of 63 additional lines from the 2241

such that each resulting total of 90 lines contains exactly one line joining any two

distinct points, (a, b) and (c, d). For a = c or b = d we have the line x = a = c

or y = b = d in one of the pre-determined pencils.

The search described would be far too extensive in practice and a procedure

must be found to reduce the total number of sets to be looked for and the total

number of isomorphic planes to be found. To do this we consider automorphisms

which preserve the 27 fixed lines of the three basic pencils. The group G which takes

the three pencils into themselves consists of 81-48 automorphisms. Of these 81

translations T have the form :

(2.3) (x, y)^(x + a,y + b).

The subgroup H fixing (0, 0) has 48 elements and is essentially the automorphism

group of the elementary abelian group of order 9. These automorphisms are of the

form:

(2.4) (x,y)-*(ot(x),a(y))

where a is a permutation of 0, 1, • • • ,8 which leaves 0 fixed. This group contains

a subgroup U of order 6. The permutations a of U are:

I

(345)(687)
(354)(678)
(36)(47)(58)
(37)(48)(56)
(38)(46)(57)

The group H may now be given by

(2.6) H =  U + Ua7 + Ua13 + Ua19 + t/a25 + Uan + Ua31 + UaiZ

where

on

«13

«19

(2.7) a26

«31

«37

«43

(2.5)

«i

«2

«3

OH

OLi

a<¡

(12)(36)(48)(57)
(13472685)
(1428)(3765)
(15862743)
(16452387)
(17832546)
(1824)(3567).
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To apply the automorphisms T of 2.3 to a line L the product A^LAb is com-

puted where Aa and Ab are the permutations of (2.1) containing taking 0 to a and b

respectively. To apply an automorphism a of H to L, a" La is calculated. As these

automorphisms leave the lines (2.1) invariant they take consistent lines to con-

sistent lines and this fact may be used in the construction and checking of the con-

sistent lines. The discussion of the method by which the 2241 lines are obtained from

249 may be simply phrased in terms of translations.

There are still other automorphisms which exchange the pencils x = c (through

( =o ) on Loo), y = c (through (0) on LM) and y = x + c (through (1) on L„) among

themselves. The reflection R about y = x is given by

(2.10) (x,y) = (y,x).

This is applied to L by computing L~l.

There is also the automorphism C:

(2.11) (x,y)->(x,x- y).

C and R together generate a group K of order 6 which permutes ( °° ), (0) and (1)

in all possible ways.

3. Classification of consistent lines. The 249 lines which pass through (0, 0)

and are consistent with (2.1) are interchanged by the group H. These lines fall into

12 equivalence classes with respect to this group.

We list here one representative of each class and the number of lines in each

class.

Number of
Class Line Conjugates

1 021687354 1
2 021687435 16

3 021768435 8
4 021768543 8

5 023168547 48

(3.1)         6 023871465 48
7 035216487    48
8 036258147     6
9 036274185     6

10 036418527    48

11 03647182 5.     6
12 036714582 6

Total    249

The distribution of these lines may be represented as follows:

Form of line Class

1      2    3    4    5    6   7    8    9    10    11    12

(3.2)    02 • • • 1    10   2266000000
0i • • • (t = 3, ■ • • , 8) 0     1117   7   8    11     8     1      1

The classes tabulated in (3.1) and (3.2) are equivalences under H alone. With

respect to G, obviously each of the 2241 lines is equivalent to one of the lines of
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(3!) but some of the classes may be further amalgamated. For example, let L2 be

the representative of class 2 in (3!) ; if we apply to L2 first the translation (x, y) —»

(x + 3, y + 8) and then the automorphism on = (12) (36) (48) (57) of H, the repre

sentative of class 3 results:

Af'LiAs = A6L2A8 =  (063)(174)(285)-(12)(364857)(084)(165)(273)

= (12)(38)(47)(56)

(12)(36)(48)(57)(12)(38)(47)(56)(12)(36)(48)(57) = (12)(37)(46)(58) = L3.

In a similar manner the classes 5, 6, 7 amalgamate under G. Specifically if we de-

note the elements of H: (12) (34) (68) and (12) (274658), by a12 and a9 respectively

and follow the rule of denoting the line (permutation) representing the tth class

of (3!) by Li we have:

a\2A2  Ls!iai2 = L(,

and

a»  A\ L6Asa>9 = Lrj.

Further, classes 9 and 10 amalgamate under G but classes 1,4, 8, 11, 12 remain

distinct. However, using the group K which permutes the basic pencils, we find that

classes 8 and 12 are equivalent under the transformation C while 11 and 12 are

equivalent under R. Thus classes 8, 11, 12 amalgamate under the group K. These

are the only new equivalences provided by K and there finally remain 6 classes: 1 ;

(2, 3); 4; (5, 6, 7); (8, 11, 12); (9, 10).
Although many of the procedures discussed in this section are essentially me-

chanical in nature, programming is at least as difficult as the hand computations

and the latter method was utilized for all these results.

4. Construction of pencils through (0, 0). A plane ir containing the additive

pencil (2!) must contain a line through (0, 0) and (1, 2), that is a line whose

representation is of the form 02 • • • . From (3.2) it is clear that such a line must

belong to one of the classes 1-6. But, using the equivalences deduced under G, we

may assume that it belongs to one of the classes 1, 3, 4, 6 since a line of class 2 is

equivalent to one of class 3 and a line bf class 5 will be transformed to one of class 6.

Among these four classes we shall establish a preference order or hierarchy in

the order 1, 6, 4, 3. That is, we shall eliminate all lines of class 1 from consideration

when making a search using a class 6 line ; again when using a class 4 line we shall

eliminate any line of class 1, 5, 6, or 7; finally using a class 3 line for a start any

line of classes, 1, 4, 5, 6, and 7 is excluded. This preference order helps to eliminate

duplications since each plane will appear only with its most preferred line.

The first stage of the search consists in finding, for each start, the possible pencils

through (0, 0). When !0 of (2!) is eliminated and we ignore the first column, such

a pencil is represented by a latin square of order 8 on the numbers 1,2, • • • ,8 whose

first line is the designated start and whose subsequent lines are selected from the

249 permissible lines through (0, 0) with due respect for preference order.

A considerable portion of this search was carried out by hand. The complete
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search was made independently by SWAC and the results compared for the dupli-

cated parts.

The mechanical procedure first finds for each of the four starts, the lines through

(0,0), (1, i), i' = 3, • ■ • ,8 consistent with the start; a further rejection is then made

on the basis of preference. Next, a particular line through (0, 0), (1, 3) is selected

and all remaining lines consistent with it are used in the high speed memory of

SWAC to form by a continuation of these processes all possible latin squares. Then

the next line through (1, 3) is taken and so on to completion.

With the set of possible pencils before us, we may proceed in either of two ways

(or a combination of them). We may eliminate equivalent pencils on the basis of the

automorphism groups H and K which leave (0, 0) fixed, and attempt to complete

the surviving representatives to planes or we may eliminate the pencils which can-

not be completed and then discuss possible equivalences among the survivors. The

first choice is better adapted to hand methods, the second to machines.

In the cases which produced a large number of possible pencils it was desirable

to introduce a secondary preference order. In particular, the class! line, L\, goes

into itself under all substitutions of H; moreover lines through (0, 0) in classes 2,

3, 4, 5 and 6 are not consistent with Li . Hence any line through (0, 0) consistent

with L\ may be carried by elements of H into one of L7, Lw , L$, La, Ln , Li2. These,

in this order, were adopted as secondary preferences and the total output of squares

of type 1 was thus reduced to 50.

Under the automorphisms of HK these pencils fall into 17 classes. Similarly,

the class 6 start produced 57 pencils ln 11 classes; the class 4 start 12 pencils in 3

classes. No pencils are found in class 3.

In the mechanical procedure, the 249 possible lines through a point (x, 0) are

first found by translating the 249 lines through (0, 0). Each of these lines is then

compared with a square and those lines which intersect no line of the square in more

than one point are stored and eventually tabulated with the square. It frequently

occurred that in the tabulation for a particular square no line through (0, y) was

present for at least one y. This square could be at once rejected as impossible to

complete.

In all routines used on SWAC the major operation was one of sorting. To facili-

tate this sorting, positional coding was used. Each element y i of a line was assigned

eight consecutive spaces in a register (since SWAC uses 36 bit words, double pre-

cision was required to store a full line). The number i is represented by a 1 in the

¿th space and 0's in the other 7; 0 is represented by 0's in all eight places. Using

complementation and extraction, the number of intersections was representable as

the number of 1 bits in a resulting word pair.

5. Representative pencils which are completable to a plane. Most of the squares

found cannot be completed; further, most of the squares which do lead to planés

do so uniquely. After a few additional pencils are added from the tabulations de-

scribed above the remainder of the lines are essentially decided and it is a simple

matter to write them down.

When, in either order, the equivalences of pencils through (0, 0) have been taken

into account and completability determined, we find 12 pencils remaining, 8 of class
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1, 1 of class 6 and 3 of class 4. These are tabulated here omitting the lines x = 0,

y = 0, x = y common to all cases. The numbering corresponds to the original posi-

tion of the square in the original list of squares mentioned above.

Class 1 representative pencils which can be completed

021687 3 54 021687354
0 3 5216487 0 3 6418527
043821765 047136285

(1.4)  054172836   (1.27) 058273461
068754213 064752813
076438521 07582413 6
08756 3 142 083 5 0 1742

021687 3 54 021687 3 54
036418527 0 3 6418527
047136285 047502183

(1.26) 058264713   (1.28) 058174236
06572 3 841 065723841
07 3 8514 6 2 073851462
08457213 6 084236715

0216873 5 4 021687 3 54
0 3 6418527 0 3 6258 147
047823165 048723561

(1.30) 058174236   (1.36) 057462813
064752813 0631742 85
0752 3 6481 07 58 3 1426
083561742 084516732

021687 3 54 021687354
0 3 6258147 0 3 6274185
04856172 3 048526731

(1.35) 057813462   (1.44) 0 5 7832416
06317428 5 06 3 158247
0754268 3 1 0754 6 182 3
084732516 084713562

Class 6 representative pencil which can be completed

02 3 871465
0 3 6 4 8 2 5 17
0 4 7 5 16 2 8 3

(6.17) 0581647 3 2
06572 3 841
0 7 4 2 3 8 15 6
0 8 16 5 7 3 2 4
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Class 4 representative pencils which can be completed

02176854 3 021768543
036274185 036471825
048526731 048237156

(4.3) 057832416   (4.4) 057624381
063417852 063852417
075183264 075183264
084651327 084516732

021768543
036582714
047136285

(4.5) 058273461
063417852
075824136
084651327

Each of the 12 has a unique completion to a full plane except 1.44 which has nine

completions. But, using our preference order, the class 6 plane may be removed

from further consideration. In the completion of the 6.17 square the class 1 line,

35402168 7, occurs unequivocally.

The tabulations yield 8 possible pencils through (2, 0) consistent with 1.44.

With one exception each of these is uniquely completable; the first has two com-

pletions. These pencils are listed here, omitting the lines x = 2, y = 0 and y = x + 1.

(2, 0) pencils for 1.44

210876543 210876543
360742851 360517428
480265317 470238651

(1.44!) 570328164   (1.44.5) 580642137
630581472 630725814
750614238 740381265
840137625 850164372

210876543 210768435
360517428 370825164
480631275 460372851

(1.44.2) 570184632 (1.44.6) 580246317
6 3 0725814 640137528
750248361 730581642
840362157 850614273

210876543 210876543
370285461 370285461
460327815 480631275

(1.44.3) 580642137 (1.44.7) 560724318
6407 31258 650147832
730518624 730518624
850164372 840362157
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(2, 0) pencils for 1.44—continued

21087654 3 21087654 3
3 80562174 380562174
470238651 460327815

(1.44.4) 560724318   (1.44.8) 570184632
6501478 3 2 640731258
740381265 7 5 0248361
830615427 830615427

To give a final separation of the completable planes it suffices to indicate the

pencils through (3, 0) for 1.44.1. Again lines x = 3, y = 0, y = x + 6 are omitted:

(3, 0) pencils for 1.44.1

147085263 18503 6274
28504713 6 247063158
354021687 3 54021687

(1.44.1.1) 426038571 (1.44.1.2) 416057832
561073428 562084713
732056814 7 3 1048526
813 064752 82 3 075461

6. Equivalence of completed planes. It remains to recognize the distinct planes

among the 19 completed planes (excluding that of class 6). For the purposes of

tabulation we distinguish the four previously known planes as follows:

A. The desarguesian plane—coordinatizable by GF(9); this appears as 1.35,

this pencil through (0, 0) being readily recognizable as giving the multiplication

table of the field.

B. The Veblen-Wedderburn plane—coordinatizable by a near field. Again this

multiplication may be recognized in the square given for 1.36.

C. The dual Veblen-Wedderburn plane—This may be exhibited as the plane

constructable from 1.44.2.

D. The plane whose coordinatization in terms of an elementary abelian addi-

tion was indicated by Hughes [3]. This appears in 1.44.1.1.

Of these, planes A, B, C have lines of the form y = xm + b in their standard form

and, using the additive pencil (2.1) and the multiplicative pencil through (0, 0)

tabulated in the last section, the remaining lines may easily be added by the reader

who wishes a complete tabulation. For B the distributive law (x\ + x2)m = a^ra +

x2m holds; the multiplications are automorphisms of the addHive group. For C the

distributive law x{m\ + m2) = xm,x + xrtii is valid.

For D we give the complete tabulation of 1.44.1.1 below. In order that the reader

may follow the details of the arguments on equivalence of planes we also list the

completions of 1.44.1.2, 1.44.6, 1.4 and 4.3.
We now maintain that the nineteen planes may be classified as follows:

A. 1.35
B. 1.36, 1.4, 1.44.6, 4.4

C. 1.44.2, 1.44.1.2, 1.44.3, 1.44.4, 1.27, 1.28
D. 1.44.1.1, 1.44.5, 1.44.7, 1.44.8, 1.26, 1.30, 4.3, 4.5.

To begin with class B, 4.4 is the Veblen-Wedderburn plane coordinatized by

the system in which — 1 is not in the center. This system is designated by the letter
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U in [1]; as shown in this reference (p. 274) the same plane results as that pro-

duced by the nearfield. The translation L —> AClLA2 or (x, y) —> (x + 1, y + 2)

takes 1.4 into 1.44.6. It is somewhat more difficult to show the equivalence of 1.44.6

and 1.36. In the projective completion of 1.44.6 we make the following replacements.

(0,0) -»(•)

(<*>)   -»(0,0)

(0) -» (0)

(l, D-><1,1)

,    v/l    1    1    1    1    1    1    1    l\      /0\m/l    2    3    4    5   6    7    8\

{CC>\0    1    2    3    4    5    6    7    8j~*\0jK  }\1    2    3    4    5   6   7    8/

where the last replacement indicates that the line x = 1 is replaced by the line

x = y in the manner shown. With the new coordinates 1.44.6 is transformed to 1.36.

This establishes the equivalences under B.

For C, the translation L —> A{~lLAi takes 1.27 to 1.44.3 and 1.28 into 1.44.4.
The transformation L —> L~ interchanges 1.44.2 and 1.44.1.2. The automorphism

C + (x, y) —> (x, x — y) interchanges 1.44.4 and 1.44.1.2. Finally the mapping

L^L (12) (36) (48) (57) interchanges 1.44.3 and 1.44.4. This combination shows

the equivalence of the planes in class C.

In class D, L -* Ai^LA, takes 1.26 to 1.44.8 and 1.30 to 1.44.7. The mapping
L -* (06)(17)(28) L(012)(375648) takes 4.5 into 4.3. We introduce new coordi-
nates into the projective completion of 4.3 by making the replacements:

(2)-><•)

(6) -* (0)

(0, 0) -♦ (0, 0)

(8,4) -> (1, 1)

,7)(0    1    2    3    4    5   6    7    8\       ,  . /0    7    5   4    2    6   8   3    l\

U;\°   7    5    !    8    3    2    6    ±)~* {  }\0   7    5    4   2   6   8   3    l) '

Under this change the plane 4.3 is found to be identical with plane 1.44.1!. The

transformation L -> (354)(678) L(345)(687) takes 1.44.8 into 1.44.5. Also L -*
(345)(687) L(354)(678) takes 1.44.7 into 1.44.5. Finally, L-> (13472685) L(1586-
2743) takes 1.44.5 into 1.44.1!. This completes the tables of equivalences.

Plane 1.44.1!

*012345678 *021687354

* 120463786 *102768435
*2015 3 4867      *210876543

*

345678012 *354021687
453786120 *4 3 5102768

534867201 *543210876
678012345 *687354021
786120453 *768435102
867201534 *876543210

Note: Starred lines are common to 1.44.1.1 and 1.44.1.2.



242 MARSHALL  HALL,   JB.,   J.   DEAN   SWIFT  AND   RAYMOND   KILLGROVE

*

*

Plane 1.44.1.1—continued

036274185 *048526731
14708526 3 156307842
258163074 237418650

3 60742851 372184506
471850632 *480265317
582631740 5 61073428
603427518 615730284
714508326 723841065
825 3 16407 *804652173

057832416 *063158247
138640527 174236058
2467513 08 285047136
381406275 * 3 06815724
462517083 417623805
5 70328164 528704613
624175830 *630581472
705283641 741362580
813 064752 8 5 24703 6 1

075 4 6182 3 *084713562
18 3 572604 165824370
264380715 27 3 605481

318257460 327 5 60148
426038571 »408371256
507146382 516482037
642803157 651248703
750614238 732056814
831725046 *840137625

Plane 1.44.1.2

012345678 *021687354
120453786 *10276843 5
2015 3 4867 *210876543
3 45678012 * 3 5 4021687
453786120 *4 3 5102768
534868201 *543210876
678012345 *687354021
78612045 3 *768435102
867201534 *876543210

*036274185 *0485267 3 1

18503627 4 173804652
274185036 265 3 17480
360742851 3 17480265
42751860 3 *480265317

*

Note: Starred lines are common to 1.44.1.1 and 1.44.1.2.
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Plane 1.44.1.2—continued

518603427
603427518
742851360
851360742

5 2 6 7
6 5 2 1
7 3 10

* 8 0 4 6

1 0 4

3 8 0
8 5 2
2 1 7

057832416 0 6 3 15 2 4 7
16 4 5 7 0
2 8 3 6 4 1
3 2 8 16 4
4 16 0 5 7

5 7 0 3 2 8
6 4 17 0 5
7 0 5 2 8 3
832416057

3 2
7 0
5 7
8 3
1 6
2 8

6 4

0 7 5 4 6 1
14 6 3
2 3

2 3
2 5 0 7

7 5 0 6 14

382507146
461823075

*507146382

614238750
*750614238

82 3 075461

1

2

3
4

5
6
7

5 8 2 4
4 7 0 6

0 6 8 1
7 2 6 3
8 14 7
3 0 5 8

7
3
5
0
2

1

0 6
1 5

7 2
5 8

6 3
4 7

2 5 6 4 0

4 3 0 6 8 1

815724306

084713562
137625840

3 7 1
371256408

♦408371256

562084713
625840137
713562084

*840137625

Plane 1.44.6

0 1
1 2

2

3
4

2
0

0   1

6
7 8
8 6

4 5 6
5 3 7
3 4 8    6
7 8 0    1
8 6 1

6
7
8 6 7
0 1 2
1 2 0
2 0 1

0 3 6
1 8 3

6 4

0 8
2 5

1

2 7

5 6
0 8
7 4

7    6
6 4   0    1
7 5   2   4
8 7    13

7 8
8 6

7
2

0

1

5
3
4

4 1

2 0
5 7
1 2

1 0 6
2 3 8
3 7 5

0   8 3    6
5    6 4   0

0

4

3
6
7
0
8
1
2

0   2    1687354
1 0 2

2 1 0
8 7
7 6
6 8
5 4
4 3
3 5

0

1
2

3
4

5
6
7

7   6
6   8
5    4

8

4
5
6
7
3
2

1
0   6    1

5
4

6
3    2
0 1
1 0   8

5   8   0
2 7    6   0
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Note- Starred lines are common to 1.44.1.1 and 1.44.1.2.
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Plane 1.44.6—continued
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Plane 1.4

012345678
120453786
201534867
345678012
453786120
534867201
678012345
786120453
867201534

035216487
164528370
283047516

308165724
471850632

517482063
642703851
750631248
826374105

054172836
173264058
265380741
3 81406275
4 18 6 2 3 5 0 7

063158247
156047832
2 3 7416058
370825164
482631705

541702683
605283471
728364510
814570326

084713562
138605427
246851370
351260748
460372851
572184036
627548103
715036284
80 3 427615

021687 3 54
102876543
210768435
357024681
436502718
548230176
684351027
76 3 415802
875143260

043821765
185732604
274605183
316257840
407 3 18256
561073428
630184572
728546031
852460317

068754213
13 7640825
256813074
3 7 2 5 8 14 0 6
4 80275361



ON   PROJECTIVE  PLANES  OF  ORDER  NINE 245

Plane 1.4—continued
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Plane 4.3—continued
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7. Concluding remarks. The failure to find, in this extensive search, any planes

beyond those known for many years strengthens the conjecture that the four planes

are a complete set for order 9. This number is the smallest order still in doubt as

to the list of possible planes and also is the smallest order with more than a single

plane [2]. It is still not possible within the limits of present mechanical equipment

to make a complete search for order 9 as was done for 8. For one thing, no list

of latin squares of order 8 yet exists. It is planned to continue the search with

other likely additive pencils beginning with the cyclic group.

The reader will have noted that, whereas the procedures used in the basic search

were mechanized or easily mechanizable, the methods of section 6 were more

involved and clearly ad hoc. No satisfactory mechanical way to identify two iso-

morphic planes exists whether they be presented by a coordinate system or by an

incidence matrix. The preparation of such a method is an interesting question.
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