A Short Table of $\int_{x}^{\infty} J_{0}(t) t^{-n} d t$ and $\int_{x}^{\infty} J_{1}(t) t^{-n} d t$

By I. M. Longman

1. Introduction. In various physical applications, and in particular in geophysics, there arises a need for the numerical evaluation of integrals of the type

$$
\begin{equation*}
L=\int_{x}^{\infty} J_{0}(t) g(t) d t \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
M=\int_{x}^{\infty} J_{1}(t) g(t) d t \tag{2}
\end{equation*}
$$

where x is a positive number, and where $g(t)$ is, at least for sufficiently large t, a monotonically decreasing function of t. Here $J_{0}(t), J_{1}(t)$ denote the Bessel functions (of the first kind) of orders zero and one, respectively.

A method of computation of (1) and (2) has been given by the author [1] for the case $x=0$, and this method can also be applied to the evaluation of (1) and (2) for small values of x (such that the interval $0-x$ is within the first few cycles of J_{0} and J_{1} as the case may be), even if the integrals diverge for $x=0$. The present paper presents an alternate method (which is easily extended to large values of x) for the case where $g(t)$ is a function of the type that can be expanded as a series of inverse powers of t

$$
\begin{equation*}
g(t)=a_{0}+a_{1} t^{-1}+a_{2} t^{-2}+\cdots \tag{3}
\end{equation*}
$$

when t is sufficiently large.
2. Description of the Method. Suppose, then, that we wish to evaluate an integral of the type (1) or (2), where for simplicity we will suppose that an expansion of the form (3) is valid when $t>x$. Then our integrals can be expanded in the forms

$$
\begin{align*}
& \text { (4) } \quad L=a_{0} \int_{x}^{\infty} J_{0}(t) d t+a_{1} \int_{x}^{\infty} J_{0}(t) t^{-1} d t+a_{2} \int_{x}^{\infty} J_{0}(t) t^{-2} d t+\cdots \tag{4}\\
& \text { (5) } \quad M=a_{0} \int_{x}^{\infty} J_{1}(t) d t+a_{1} \int_{x}^{\infty} J_{1}(t) t^{-1} d t+a_{2} \int_{x}^{\infty} J_{1}(i) t^{-2} d t+\cdots
\end{align*}
$$

so that (1), (2) can be evaluated if we can evaluate integrals of the type

$$
\begin{equation*}
L_{n}=\int_{x}^{\infty} J_{0}(t) t^{-n} d t, \quad n=0,1,2, \cdots \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
M_{n}=\int_{x}^{\infty} J_{1}(t) t^{-n} d t, \quad n=0,1,2, \cdots \tag{7}
\end{equation*}
$$

We will see later that the series (4), (5) are quite rapidly convergent for $x>1$, the rapidity of convergence increasing with x. However it should be noted that in
a number of applications (for example propagation in layered media, seismology problems) the integrals we need to evaluate have ρt in place of t in the arguments of the Bessel functions, where ρ is a positive number which may be as high as 20. After making the appropriate scale-factor transformation we obtain the integrals (6) and (7) with a factor ρ^{n-1} in front of each integral. For this reason the integrals (6) and (7) are often required with high precision and at least ten place accuracy would be needed for such application.

With regard to the integrals L_{n}, M_{n}, the only published tables known to the author are one of

$$
\int_{0}^{x} J_{0}(t) d t, \quad x=0(0.01) 10
$$

by Lowan and Abramowitz [2], from which we can obtain L_{0} as

$$
L_{0}=1-\int_{0}^{x} J_{0}(t) d t
$$

and one of L_{1}, for $x=0$ (0.1) 10 (1) 22, by Lowan, Blanch and Abramowitz, [3]. Watson [4] gives a table of the maxima and minima of

$$
\int_{0}^{x} J_{0}(t) d t
$$

and this table has been extended by the author [1], who has also pointed out an error in Watson's table. Also Smith [5] and Lowan, Blanch and Abramowitz [3] give asymptotic expressions for L_{1}. For large values of x beyond the range of the published tables we can use the series

$$
\begin{equation*}
\int_{0}^{x} J_{0}(t) d t=2\left[J_{1}(x)+J_{3}(x)+J_{5}(x)+\cdots\right] \tag{8}
\end{equation*}
$$

Also we have the obvious result

$$
\begin{equation*}
M_{0}=J_{0}(x) \tag{9}
\end{equation*}
$$

It is not the purpose of this paper to give extensive tables, but rather to present a general method for their computation, and to illustrate their use by way of an example.
3. Method of Computation. Integration by parts show that the L_{n}, M_{n} satisfy the following recurrence relations for a given value of x :

$$
\begin{align*}
L_{n} & =-x^{-n} J_{1}(x)+(n+1) M_{n+1} \tag{10}\\
M_{n} & =x^{-n} J_{0}(x)-n L_{n+1} \tag{11}
\end{align*}
$$

from which we deduce

$$
\begin{equation*}
L_{n+2}=\frac{J_{0}(x)}{(n+1) x^{n+1}}-\frac{J_{1}(x)}{(n+1)^{2} x^{n}}-\frac{L_{n}}{(n+1)^{2}} \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
M_{n+2}=\frac{J_{0}(x)}{n(n+2) x^{n}}+\frac{J_{1}(x)}{(n+2) x^{n+1}}-\frac{M_{n}}{n(n+2)} \tag{13}
\end{equation*}
$$

Equation (12) has been given by Smith [5] where he uses it to obtain an asymptotic expansion for L_{1}. Thus starting from L_{0} and L_{1}, which are either obtained
from existing tables, or must be calculated, we can use (12) to compute successive L_{n} 's. Furthermore the form (12) shows that for even moderately large x, L_{n} tends to zero very rapidly as n increases. This makes the calculation of the series (4) a very rapid process.

With regard to the M_{n} 's, starting with the relations

$$
\begin{aligned}
& M_{0}=J_{0}(x) \\
& M_{1}=L_{0}+J_{1}(x) \\
& M_{2}=\frac{1}{2}\left(L_{1}+x^{-1} J_{1}(x)\right)
\end{aligned}
$$

(which are obtainable from (10), (11)), successive M_{n} 's can be computed by means of (13). Some L_{n} 's and M_{n} 's have been computed in this way, and these are given in tables 1 and 2.

With regard to L_{0} and L_{1}, these are obtainable (by interpolation if necessary) from existing tables ([1], [2], [3], [4], [5]), or, for large x, by means of asymptotic expansions. The interpolation can easily be carried out accurately using Taylor's theorem. Examples of such interpolation are given in Longman [1]. Asymptotic series for L_{1} are given by Smith [5] and by Lowan, Blanch and Abramowitz [3], while for L_{0} we can apply Smith's method to obtain the result

$$
\begin{align*}
& \int_{x}^{\infty} J_{0}(t) d t \sim J_{0}(x)\left[\frac{1}{x}-\frac{1^{2} \cdot 3}{x^{3}}+\frac{1^{2} \cdot 3^{2} \cdot 5}{x^{5}}-\frac{1^{2} \cdot 3^{2} \cdot 5^{2} \cdot 7}{x^{7}}+\cdots\right] \\
& \quad-J_{1}(x)\left[1-\frac{1^{2}}{x^{2}}+\frac{1^{2} \cdot 3^{2}}{x^{4}}-\frac{1^{2} \cdot 3^{2} \cdot 5^{2}}{x^{6}}+\cdots\right] \tag{14}
\end{align*}
$$

and for large x this can be used to compute L_{0} using the known asymptotic series for $J_{0}(X), J_{1}(X)$.
4. Tables. Tables 1 and 2 were computed from equations (10), (11), (12) and (13) and existing tables [2] and [3] of L_{0} and L_{1} by the use of an IBM 709 computer at the Western Data Processing Center of the University of California, Los Angeles.
5. Example of the Use of the Tables. Suppose we wish to compute

$$
I=\int_{10}^{\infty}\left[J_{0}(t) /\left(t^{2}+1\right)\right] d t
$$

Using the expansion

$$
\begin{equation*}
\left(t^{2}+1\right)^{-1}=t^{-2}-t^{-4}+t^{-6}-\cdots \tag{t>1}
\end{equation*}
$$

we have

$$
I=L_{2}-L_{4}+L_{6}-L_{8}+\cdots
$$

from which we obtain

$$
I=-0.001042
$$

Institute of Geophysics, University of California, Los Angeles, California
Table 1. $L_{n}=\int_{x}^{\infty} J_{0}(t) t^{-n} d t$

	$x=1$	$x=2$	$x=3$	$x=4$	$x=5$	$x=6$	$x=7$	$x=8$	$x=9$	$x=10$
L_{0}	0.080270	-0.425770	-0.387567	-0.024734	0.284688	0.293779	0.045360	-0.210747	-0.252266	-0.067011
L_{1}	0.237097	-0.135296	-0.126534	-0.023126	0.046841	0.049422	0.011431	-0.022961	-0.028159	-0.008787
L_{2}	0.244878	-0.039009	-0.038176	-0.008510	0.007372	0.008013	0.002192	-0.002433	-0.003082	-0.001055
L_{3}	0.213312	-0.010280	-0.011069	-0.002502	0.001117	0.001265	0.000372	-0.000251	-0.000332	-0.000120
L_{4}	0.178963	-0.002357	-0.003155	-0.000664	0.000163	0.000196	0.000059	-0.000025	-0.000035	-0.000013
L_{5}	0.150464	-0.000365	-0.000896	-0.000167	0.000023	0.000030	0.000009	-0.000002	-0.000004	-0.000001
L_{6}	0.128279	+0.000052	-0.000255	-0.000041	0.000003	0.000005	0.000001	-0.000000	-0.000000	-0.000000
L_{7}	0.111130	0.000093	-0.000073	-0.000010	0.000000	0.000001	0.000000			
L_{8}	0.097715	0.000065	-0.000021	-0.000002		0.000000				
L_{9}	0.087037	0.000037	-0.000006	-0.000001						
L_{10}	0.078383	0.000020	-0.000002	-0.000000						
L_{11}	0.071249	0.000010	-0.000001							
L_{12}	0.065279	0.000005	-0.000000							
L_{13}	0.060216	0.000002								
L_{14}	0.055871	0.000001								
L_{15}	0.052105	0.000001								
L_{16}	0.048809	0.000000								
L_{17}	0.045902									
L_{18}	0.043320									
L_{19}	0.041011									
L_{20}	0.038935									
L_{21}	0.037057									
L_{22}	0.035352									

Blank spaces denote zero entries.
Table 2. $M_{n}=\int_{x}^{\infty} J_{1}(t) t^{-n} d t$

	$x=1$	$x=2$	$x=3$	$x=4$	$x=5$	$x=6$	$x=7$	$x=8$	$x=9$	$x=10$
M_{0}	0.765198	0.223891	-0.260052	-0.397150	-0.177597	0.150645	0.300079	0.171651	-0.090334	-0.245936
M_{1}	0.520320	0.150955	-0.048508	-0.090778	-0.042891	0.017095	0.040677	0.023890	-0.006955	-0.023539
M_{2}	0.338574	0.076533	-0.006757	-0.019818	-0.009338	0.001654	0.005381	0.003184	-0.000451	-0.002220
M_{3}	0.228309	0.035057	-0.000167	-0.004213	-0.001910	0.000109	0.000699	0.000411	-0.000018	-0.000207
M_{4}	0.163341	0.015453	+0.000372	-0.000883	-0.000376	-0.000004	0.000089	0.000052	+0.000001	-0.000019
M_{5}	0.123803	0.006738	0.000206	-0.000184	-0.000072	-0.000003	0.000011	0.000006	0.000000	-0.000002
M_{6}	0.098419	0.002943	0.000083	-0.000039	-0.000014	-0.000001	0.000001	0.000001		-0.00002
M_{7}	0.081190	0.001295	0.000030	-0.000008	-0.000003	-0.000000	0.000000	0.00000		
M_{8}	0.068898	0.000575	0.000010	-0.000002	-0.000000			0.00000		
M_{9}	0.059752	0.000258	0.000003	-0.000000						
M_{10}	0.052709	0.000116	0.000001							
M_{11}	0.047130	0.000053	0.000000							
M_{12}	0.042608	0.000024								
M_{13}	0.038872	0.000011								
M_{14}	0.035733	0.000005								
M_{15}	0.033061	0.000002								
M_{16}	0.030760	0.000001								
M_{17}	0.028756	0.000001								
M_{18}	0.026997	0.000000								
M_{19}	0.025441									
M_{20}	0.024053									
M_{21}	0.022809									
M_{22}	0.021687									

Blank spaces denote zero entries

1. I. M. Longman, "Tables for the rapid and accurate numerical evaluation of certain infinite integrals involving Bessel functions," MTAC, v. 11, 1957, p. 166.
2. Arnold N. Lowan \& Milton Abramowitz, "Table of the integrals $\int_{0}^{x} J_{0}(t) d t$ and $\int_{0}^{x} Y_{0}(t) d t$, Tables of Functions and of Zeros of Functions, NBS Applied Mathematics Series, No. 37, U. S. Government Printing Office, Washington, D. C., 1954, p. 21.
3. Arnold N. Lowan, G. Blanch, \& Milton Abramowitz, "Table of $J i_{0}(x)=\int_{x}^{\infty} J_{0}(t) / t$ $d t$ and related functions," Ibid., p. 33.
4. G. N. Watson, A Treatise on the Theory of Bessel Functions, The University Press, Cambridge, 1948, p. 752.
5. V. G. Smith, "An asymptotic expansion of $J i_{0}(x)=\int_{x}^{\infty} J_{0}(t) / t d t$," Journal of Mathematics and Physics, v. 22, 1943, p. 58.
