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1. Introduction. The primary purpose of this paper is to provide a practical

method of constructing Galois fields of characteristic 2 of large orders and thereby

simultaneously give a practical way of generating a large supply of polynomials

of high degree irreducible modulo 2. These polynomials are of special interest in

connection with the theory of linear recursive sequences. See, for example [5];

some applications are suggested in [4].

The basic structure of Galois fields is extremely simple. For each prime q and

each n there is one and (up to isomorphism) only one finite field of order q", desig-

nated by GF(q"). Its additive group is the elementary abelian group; the direct

sum of n cyclic groups of order q. The multiplicative group of the non-zero elements

is cyclic. The field GF(qnm) may be constructed from a given GF(q") by finding a

polynomial of degree m, irreducible over GF(q") and considering the set of poly-

nomials with coefficients in GF(qn) modulis q and the irreducible polynomial.

The subfields of GF(q") are precisely GF(q ) where d | n; if g is a primitive gen-

erator of GF(q"), i.e. of the multiplicative subgroup of its non-zero elements, gm

is a primitive generator of GF(qd) where m = (q" — l)/(qd — 1).

These theorems, covered by many basic texts of algebra since the original work

of L. E. Dickson [2], essentially dispose of the elementary theory of these fields.

A particularly complete theory is contained in [1] which also has a bibliography

listing a number of items from the extensive literature of the deeper arithmetic of

the Galois fields. In general, results quoted without proof in this paper may either

be found directly in [1] or are immediate consequences of statements proved therein.

From a practical standpoint, the only problems left by the structure theorems

are those of finding an irreducible polynomial of degree m over the base field and

of finding a primitive generator of the field with respect to this polynomial. In

certain cases an irreducible polynomial is readily available and we are here con-

cerned with the exploitation of these cases.

2. Cyclotomic polynomials over GF(2). Let p be a prime for which 2 is a primi-

tive root; then the cyclotomic polynomial fP(x) = (xp + D/(.r -f 1) is irreducible

over GF(2). Thus for such primes the theory permits the realization of GF(2p~l).

Further, if g is a primitive generator of this field we may realize GF(2d) by con-

sidering powers of gm, m = (2P_1 - 1 )/(2d - 1) when d \ (p — 1). Since the only

obvious restriction imposed on p by the condition that 2 be a primitive root of p

is that p m ±3 (mod 8), it is likely that all fields GF(2"), n fá 0 (mod 8), may
be realized in this way for sufficiently large p. The smallest fields which cannot be

constructed from polynomials listed in this paper are those for which n = 8, 16, 17.

If 2 is any element of GF(2") the powers z°, zl, • • • , zn will be linearly dependent

over GF(2) and the resulting relation of dependence/(z) = 0 will give an irreducible
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polynomial f(z) if z does not he in a proper subfield of GF(2"). If 2 is a primitive

generator of GF(2"),f(z) will be, by definition, primitive irreducible. All irreducible

polynomials over GF(2) may be constructed in this way.

By simple counting arguments we see that the number of irreducible polynomials

of degree n is

- (2" — 22B/î< 4- S2B/4,,Í — ... )

n

where the g¿ are the distinct prime divisors of n. Similarly, the number of primitive

irreducible polynomials of this degree is (l/n)ip(2n — 1) where <f> is the Euler

totient.

The actual problem of construction of these fields now reduces to finding a

generator of the cyclic group. It is at this point that the theory carries us no further

and resort must be taken to high speed computing machinery. It is easy to see that,

for p > 5, any generator modulo the cyclotomic polynomial must be of degree at

least 3. In particular, since xp = 1,1 and x? are of order p. To investigate the orders

of the other linear and quadratic forms we study 2 = x + 1/x; define h(z) =

x~mfp(x) where m = (p — 1 )/2; h is a polynomial of degree m in z. Thus 2 belongs

to the sub-field GF(2m) and the order of 2 is a divisor of 2m — 1. Now (x + I)2 =

x2 4- 1 = xz; thus the order of x2 + 1 is a divisor of p(2m — 1) and the order of

x + I is the same as that of its square. Again x(x + 1 ) has the same order as x + 1.

Finally x* + x 4- I - x(z + 1) and 2 4- 1 is also in GF(2m). Thus the order of
all linear and quadratic forms divides p(2m — 1) < 2r~l — 1 for p > 5.

It is of interest to note that the order of 2 is precisely 2m — 1 for all suitable

primes p ^ 131) except for 37 and 101 for which it is \ the maximum.

We must, then, seek among the cubic or higher polynomials for our generators

and we turn to a consideration of the computations by which this may be done.

3. The power routine. The primary tool in the investigation is a high-speed

routine programmed for SWAC which finds prescribed powers of polynomials

F(x) modulis polynomials G(x) and 2. The routine has two parts and the second

part may be used as many times as desired without return to the first. The initial

part receives F(.v) and G(x) as inputs and computes n successive squares (F(x)) ,

(F(x) )4, • • • , (F(.v) )'" where n is the degree of G(x), reducing the results modulis

2 and G(x). The last square is a check; if G(x) is irreducible, (F(x))** = F(x).

The second receives as input the exponent of the power of F(x) desired, the upper

limit being 2" — 1, and computes this power by multiplying together the appropriate

stored powers from the first routine. The routines are quadruple precision and,

since SWAC has a 36 bit word, degrees and powers are limited to 143 and 21 — 1

respectively. About 5 second per multiplication is required in either routine. This

means a maximum of 75 seconds for completion in either case.

To apply this routine to the problem of determining a primitive generator, fP(x)

is used for G(x) and possible generators are used as F(x) in lexicographic succes-

sion. The exponents are (2*~l — \)/q, whereç, are the prime divisorsof (2P~1 — 1).

(It is a fortunate circumstance that all necessary factorizations are known [3].)

If the power of F(x) is 1 for any of these exponents, F(x) is not a primitive genera-

tor, and conversely. As a check the power is also calculated for g< = 1 ; here the value

must be 1. Table 1 lists the earliest primitive generator for each prime.
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Table 1

Generating polynomials for GF(2p~l); to be used modulis 2 and (x» 4- l)/(x 4- 1)

polynomial

3
5

11
13
19
29
37
53
59
61
67
83

101
107
131
139

+
+

x'-f

+
+
4-
+

4-
4-
+

xs 4- x4 4-

x3

x3

X*

X3

X2

X*

X3
Xs

X2

x3 4-
x2 4-
x3 +

X3 +

4. Generators of subfields of the cyclotomic fields. There are 16 primes covered

by Table 1. If subfields are considered, 24 additional fields may be constructed.

Specifically, for each polynomial in Table 1 as F(x) and its corresponding fP(x)

as G(x) we compute the (2P~1 — l)/(2d — l)-th power of F(x) for each divisor

d of p — 1,2 < d < p — 1. The results are tabulated in Table 2. Here, in the
largest case, the result is a polynomial of degree 138 and we have adopted a con-

densation of coefficients into octal notation to bring the result within manageable

proportions. For example, x7 4- x5 + x4 4- x2 4- x 4- 1 may be represented first by

the ordered octuple of its coefficients: 10 110 111, and these may be read in groups

of three as octal numbers. Thus the polynomial would appear as 267.

The polynomials of Table 2 are not necessarily the lexicographically earliest

generators of their fields. It would be quite impossible to find such generators.

However the disadvantages of polynomials of large degree are not as great as might

be assumed at first thought. If a number of powers are to be computed, the full size

of the registers is needed for the reduction modulo fP(x) and no more additions are

needed to compute the irreducible polynomials than if the degrees were smaller.

The only unavoidable disadvantage is the danger of an error in transcription.

The entries in the table have been preserved against error by a comparison of

output decks on successive runs and careful proofreading.

5. Utilization of generators to produce irreducible polynomials. As indicated in

section 2, an irreducible polynomial is produced from an element z of GF(2") not

belonging to a proper subfield by finding the relation of dependence of

2°, 2 , 2 , • • • , zn. In one set of n 4- 1 registers are initially stored the powers of z.

Another companion set is loaded initially with a single 1 in the ith place, ¿ = 0(1 )n.

Whenever an operation is performed in one set of registers, the same is done to the

companion set. By addition of other elements of the power registers the value 0

is obtained in the 2° (or z") register. The irreducible polynomial is then read from



Table 2

Generating polynomials for proper sub-fields of GF{2*-i). Fields are GF(V) for d \ p - 1, d è 3.
Generators are to be used modulis 2 and (xr + l)/(x + 1). See section

4 for use of octal notation to represent polynomials.

polynomial

6
4
3

9
6
3

14
7
4

18
12
9
6
I
3

26
13

1

29

30
20
15
12
10
6
5
4
3

33
22
Tl
I)
3

41

50
25
20
10
5
4

53

65
26
13
10
5

69
46
23
6
3

1267
6

1727

77777
76637
72055
57550
50006

11111

1634
77723
52020
52023

77777
77731
65424
47372
12434

1677
1770
1734
620

1000
1667

37777

77777
45062
45221
00200
56373

77777
75477
32452
56617
15604

mil
73777
42260
20714
60310
35170

11 m

04144
15105
22004
62617

mu
um
07006
22064
44500

117
117
26

64
75
30
71
76
75

77777
42534
50100

4
1
7

10777
6633

17577

00000
23334
01030
22347
45677
23377

77777
36165
21003

64
75
2

25
42

17777
17723
17003
34564
55263
14477
76200
36544
10124

00000
24504
13043
46004
11170

77777
64723
60103
50135
06377
11710
51450
52035
50147

00000
50000
36044
02150
41201

77777
51515
02017
07663
77143
23623
24624
07653
46024

00000
00452
17304
47301
20436

77777
77777
36634
00420
30220
05511

77777
71554
35312
64141
00000
25702

77777
77777
16067
30210
00220
53322

77777
77776
77653
01470
60460
77032

il m

04004
11634
40100
70360

77777
77777
07414
32472
03000

77777
56032
45045
66020
77432

77777
77775
03412
36641
24444

77777
04432
44225
12043
36763

77777
47766
45305
62124
16607

77777
00042
16277
06000
56202

77777
37777
06566
04335
05214

360

1760
1156
1321

77744
26202
63175

77705
66330
56617

00055
20271
20031
11234
73746
31274

77744
21744
22003

3777  77777  77777  77760

77760
17760
00360
71022
15265
74461
01174
31207
52020

00055
35255
32101
41023
22105

37  77777  77777- 77777  77777  77760

77734
70774
36044
20231
30004
10443

77777  77777  77777  77777  77777  77760

77760
36720
77325
00030
57274

77744
54744
41345
10117
00270
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the companion register. The process can be carried out by systematic diagonali-

zation.

As an example, we construct a primitive irreducible cubic using 2 = x" 4- x 4-

x6 4- x4 4- 1 (1321) for p = 13. We find z2 = x" + x10 4- x9 4- x7 4- x* 4- x4 4-

x3 4- x2 and 2* = x' 4- x  4- x* 4- x5. The calculations can be arranged :

1: 000   000   000   001 1: 000   000   000   001

2: 001   011   010   001 23 4- 2: 000   000   000   001

22: 111    011    011    100

23: 001    011    010   000

z 4- 2 4- 1: 000   000   000   000.

Specifically, 2 is used (vacuously) to clear the first column; then discarded.

The second column is now empty; z3 is used to clear the third column and discarded.

All but the last column are now clear and z3 4- 2 is used to finish the job; the poly-

nomial is 2 4-2+1- Alternatively we could have started from 1 and the right

hand column:

z +  1: 001 011 010 000

22: 111 Oil Oil 100

z3: 001 Oil 010 000,

2 4-1:001 Oil 010 000 z3 + 2 4- 1: 000 000 000 000.

23: 001 Oil 010 000

The diagonalization process, while requiring large storage, is very rapid. No

more than 2pn2 additions need be performed.
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