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1. Introduction. A number of iterative procedures have been developed for the

approximate solution of a linear operator equation of the form Au = f, where / is

a given element in some suitably normed linear space and A is either a matrix, an

integral, or an abstract operator in this space.

The purpose of this paper is to unify and extend investigations of finite al-

gebraic systems by von Mises and Polaczek [10], Cesari and Picone [4], Quade [12],

Keller [8, 9] and others [19]; integral equations of the Fredholm type by Neumann

[5], Wiarda [18], Bückner [2, 3], Wagner [17], Samuelson [14], and Fridman [7];

and operator equations in abstract Hubert or Banach spaces by Schönberg [15],

Rail [13], Bialy [1], and Petryshyn [11].

This generalization and unification of various methods in terms of conditions

for convergence and error estimates is accomplished by studying a rather general

iteration procedure of which the above methods are special cases. It is hoped that

the procedure presented here can be used as a basis for possible discovery of new

iterative methods when applied to concrete problems.

2. Existence, convergence, and error estimate. Let X denote a complete real

or complex normed linear vector space, P a linear bounded operator in X, and R(P)

the range space of P. We say that P is invertible if P has a bounded inverse P~ on

R(P), i.e., P"1 is such that P~lPu = u for all u <E X and PP~\ = v for all v <E R(P).

If, in addition, R(P) = X, then P is called continuously invertible. Let m and M

be non-negative real numbers defined by

(a) m{P) = gib. H**!!,       M(P) = l.u.b. !l£tï
«^0       I) U || u^O        II U ||

for all u € X. It is known [ || ] that P is invertible if and only if m(P) > 0. Further-

more, if m(P) > 0, then || P_I II = - and m(P)M(P~l) = 1.
m

Our problem is to develop a general iteration procedure for the approximate

solution of the operator equation

(1) Au = f,

where / is a given element in X and A is a given linear bounded operator in X.

Our first step in this direction is to investigate the existence and the uniqueness
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of the solution of equation ( 1 ) when A satisfies certain conditions stated in Theorem

1 or Corollary 1 below.

Theorem 1. Equation ( 1 ) has a unique solution u for every fin X if and only

if there exists a continuously invertible operator C and a bounded linear operator B

with an inverse B~~ having the property that the series

(2) £ Tq

converges for every g in X, where T = C L and L = C — BA. The solution u in

this case is given by the sum of (2).

Proof. Let / be an arbitrary element in X and C and B be some operators

having the above property. If we put g = C~ Bf, then in view of the completeness

of X and our hypothesis the series (2) converges to some element u in X. Moreover,

u* is a solution of equation (1) for if u* = z27=a Tlg, then Tu* = u* — g or equiv-

alently C~xBAu* = C-1^/. This and our conditions on B and C imply that Au* = f;

i.e., m is a solution of (1). To show that m is a unique solution of equation (1)

let us suppose that equation ( 1 ) has another solution u ^ u . Then v = u — u ^ 0

and Av = 0 or BAv = 0. This implies that Cv — BAv = Lv = Cv or equivalently

that (1 — T)v = 0 from which it follows that the operator (I — T) has no inverse.

This, however, is a contradiction to the hypothesis (2) for, if the series (2) con-

verges for every g in X, then (7 — T)"1 exists and

(2') (7 - TTxg = E Tg

for every g in X. In fact, if (7 - T)h = 0 for some h ^ 0, then h = Th = T% =

••• = Tnh. Put hn+1 = T,7~oT%. By hypothesis  (2), lim« hn+1 =   £?=0 T'Vi

exists. Now limn (—r-r^+i) = nm» -—r~r"!™1 hn+i = 0-limnA„+1 = 0. But
\n + 1        / n + 1

lim„(——— h„+i J = limn h = h. Thus h = 0. This implies that (7 — T)~l exists

and that u = u is a unique solution of equation (1). Since T is bounded and

u* = JlUrg, (1 - T)u* = lim„ Ewf« - limn J^UTg - lim„ g = g
whence we conclude that u* = (1 — T) x g = X?-o T'g. This proves the first

part of Theorem 1.

To prove the converse of Theorem 1 note that if equation (1) has a unique

solution u for every / in X, then A is continuously invertible. We may thus choose,

for example, C to be an arbitrary continuously invertible operator in X and B =

vCA-1, where r\ is a complex number such that | 1 — rj | < 1. Then BT1 = - ACT1
V

exists and T = C~XL = CT\C - BA)  =  1 - r,. Since || T || = | 1 - v \ < 1

and || Tn || ^ || T U" the series (2), £?-o Tg =   X?-o (1 - vyg, converges to

some element in X for any g in X. Suppose we denote by u the sum of the latter

series when g = CT^f. Since, on the other hand, ^,7-o (1 — y)*g = - g, we have
v

u = -g = -C~ Bf — -C~ r)CA~f = A~ f. This shows that u = u* and completes
v       v v

the proof of the theorem.
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Let us observe that in some practical cases it may turn out that the verification

of the very general condition (2) is not easy. In these cases the following corollary

can be used in which condition (2) is replaced by conditions that are simpler but

more restrictive and in some cases easier to verify.

Corollary 1. The assertion of Theorem 1 remains valid if condition (2) is re-

placed by one of the following three conditions

(2.1) Um <Pp'5öT < 1,    for every   g £ X,

(2.2) lim If || Tn ||   < 1,
n

(2.3) || T ||     < 1,

whose degree of restriction increases in the given order.

Proof. We see from the proof of Theorem 1 that it is sufficient to show that

(2.3) => (2.2) => (2.1) => (2). Let a(T) denote the spectrum of T, i.e., the set

of all complex numbers X for which the operator (X7 — T) is not continuously

invertible, and r(T) = supx„s,(T) | X | , the spectral radius of T. It is known [16]

that

(3) r(T) =lim^JTrl
n

and that for every positive integer n

(4) r(T) ^ V\\T»\\.

Thus, in view of (4) with n = 1, (2.3) =* (2.2). To show that (2.2) => (2.1), we

consider the series

(5) i ¿Tg,

where ß is a complex number and g is any element in X. The radius of convergence

r of (5) is given by the formula

j.

(6) T =  lim ^|| Tg

with the property that (5) converges for | ß \ < r and diverges for | ß \ > r. Since

for each n and g in X, || T"g || ig || Tn \\\\ g || we easily derive from (3) and (6)

that

(7) KT)à-(«Ë^Tnl).
T n

Thus, by (7) and (ß), if r(T) < 1, then ïïm„ \^|| Tng || < 1 for each g; i.e., (2.2) =>

(2.1). Finally, if lim„ v'H Tng \\ < 1 for every g in X, then r > 1 and thus by the

above mentioned property of r the series £¿Lo T%g, which is (5) with ß = 1, con-

verges in X.

Remark 1. In case C = I and B is continuously invertible, Theorem 1, under

the more restrictive condition (2.3), was proved by Rail [13].
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Theorem 2. If for every f in X equation (1) possesses a unique solution u in X,

then the sequence {w„+i! of itérants determined by the process

(8) Cun+i = Lun + /i, n = 0, 1, 2, • • • ,

where C and L are the same as in Theorem 1 and /i = Bf, converges to the solution

u* of equation (1) for any initial approximation uo in 77 if and only if condition (2)

of Theorem 1 is satisfied. In case of convergence the error estimate is given by

(9) || Un+i - u* || g \\{BA)-lL (HI un+1 -un ||

or by a less precise but a more practical estimate

(10) || un+1 - u* || ¡Ê ^à H Un+1 - un ||.

Proof. Let the sequence {w„+i} be determined by (8) or equivalently by

(11) Un+i = Tun + g,

where g = CT1^ and T = C~lL. We find from (11) by induction that

(12) Un+1= ¿ rg + r+V
¿=0

Equation (12) implies that the sequence {wn+i} converges if and only if the series

(2), 53"=o T'g, converges. By Theorem 1, the limit u* = lim„ un+i, which is the

same as the sum of the series (2) with g = C~ fi, satisfies equation (1) and is

independent of the choice of u0 for condition (2) implies that lim„ Tn+1ua = 0 for

any w0 ¡E X, i.e., (2.1) => (2).

To derive estimates (7) and (10) let u be the exact solution and un+i an ap-

proximate solution of (1) determined by (8). Subtracting Lu„+i from both sides

of (8) we get Cun+1 — Lun+i = L(u„ — w„+i) + /i or BAu„+1 = L(un — un+i) + fi.

On the other hand, BAu = /i and, therefore, subtracting the corresponding sides

in the last two equations we obtain

(13) BA(un+1 — u*) = L(u„ — un+i).

Note that (2') implies that m(BA) > 0 for, by (2'), the operator (7 - T)_1 =

[7 - (7 - C^BA)]'1 = {C~lBA)"x exists on all of 77 and is bounded. From this

we see that (BA) has a bounded inverse given by (^BA^CT1. The error esti-

mates (9) and (10) follow now immediately from (13) and the properties of m and

M as defined in (a). This completes the proof of Theorem 2.

Corollary 2. For convergence of the sequence {un+i} determined by (8) to the

solution u of (1) for a given f in X it is sufficient that there exist operators C and B

satisfying any one of the more restrictive conditions (2.1), (2.2), or (2.3) of Corollary

1. The error estimates in this case are the same as in Theorem 2.

At the end of this section let us remark that in case C is invertible, B possesses

an inverse B~\ R(C) 2 R(BA), and X<¡ denotes the subspace of X consisting of

all elements g in X of the form g = C~lBh, h G R(A), then from the arguments

of the first part of Theorem 1 and Theorem 2 we derive

Corollary 3. If, for a given f in X, equation ( 1 ) is solvable, then for any initial

approximation u0 in X0 the sequence \u„+i} determined by (8) converges to the solution
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of ( 1 ) if the series z27~o T'g converges for every g in X0, where T — C lL with C

and B having the properties specified in the last paragraph.

3. Special Cases. The general method (8) is not precise until the choice of C

and B has been made. In this section we classify a number of suggested iterative

methods for the solution of (1) by specifying operators C and B in (8) or (11).

At the same time, some of the methods that were investigated and used before

only for finite matrix equations will thus be extended to operator equations in

infinite dimensional normed linear spaces. In order not to repeat ourselves each

time when we specify a particular method it will be assumed, in what follows,

that equation ( 1 ) is solvable and that in various special cases the resulting operator

T = CT^iC — BA) = 7 — C^BA satisfies at least one of the conditions of Section

1, thus ensuring the convergence of {w„+i}. Furthermore, if for a given special

method of (8) or (11) the operator T satisfies the corresponding condition of

Theorem 2 or any one of Corollary 2, then for each special method considered

below the corresponding error estimates (9) and (10) remain valid.

Method la. If C = I and B = a > 0, where 7 is the identity operator in X

and a is a real parameter, then (8) reduces to the standard iteration

(8.1a) Un+i — (I — ctA)un + af

which converges to the solution of ( 1 ) if a is so chosen that T = I — aA satisfies

the conditions of Section 1.

In particular, if we assume that <r(A) contains only eigenvalues X of A, then

<t( T) also contains only eigenvalues ß of the form ß = 1 — a\ and, therefore, exactly

as in the author's paper [11] one shows that convergent schemes (8.1a) can be

found if ñeX > 0. Indeed, in that case a suitable a can be determined corresponding

to any circle in the (x, ?/)-plane (X = x + iy) which passes through the point

(0, 0), has a center on the real z-axis, and which is such that all eigenvalues X of

A lie in its interior. If Í — , 0 1 is the center of such a circle; i.e., of [x — - I  + y2 —

—-, then this value of a gives a convergent scheme. If, in addition, A is symmetric
cc

and X > 0, then from the above remark (also see [11]) one easily derives that

(8.1a) converges for any a in the interval

(14) 0<a<^,

where the number X = || A || is the largest eigenvalue of A [16].

Let us note that in case A is an integral operator determined by a square sum-

mable symmetric and positive definite kernel in L2(a, b) the convergence of (8.1a)

with a satisfying (14) was proved by Fridman [7]. Bialy [1] extended his results

to the case when A is a non-negative symmetric operator in a Hilbert space 77 by

showing that for a satisfying (14) scheme (8.1a) converges to a solution of (1)

if and only if (1) is solvable.

Remark 2. The above discussion applies fully to the case when ÄeX < 0 if X are

complex and to the case when X < 0 if X are real and A is symmetric.

Method lb. If A is not symmetric, then instead of (8.1a) one may use

(8.1b) m„+1 = (7 - aA*A)u„ + aA*f
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which is (11) with C = a~\ B = A*, and T = 7 - aA*A. Formula (8.1b) was

proposed for matrix equations by Quade [12] who proved its convergence for any

a in

(15) 0<a<
A* A

Bialy extended the applicability of (8.1b) to operator equations in H. Note that

since A A is a non-negative operator in 77 and || 4 A || = ||4||2 the procedure

(8.1b) is (8.1a) applied to the equation A*Au = A /which, as can be easily proved,

is equivalent to equation (1) since (1) is solvable.

Method lc. If A is a symmetric but not positive integral operator of the form

A = I — X7Í, then Bückner [3] suggested the procedure

(8.1c) un+1 = (7 - {-\y-^A)un + (-l)n-lßf

which, as was also shown by Bialy for an arbitrary symmetric operator A in 77,

converges for all ß in the interval

(16) 0 < ß <  ^
..AW

It follows from (8.1c) that its equivalent iteration formula is

(8.1c') un+1 = (7 - ?AA)un-i + ß2Af

which is (11) with C = ß~2, B = A, and T = 7 — ß A A for the subsequences

{u2n} and {u2n+i\- The inequality (16) implies (15) with a = ß . Since equation (1)

is solvable, both subsequences converge to the same solution of ( 1 ).

Method 2. If A is a non-singular matrix, then Cesari and Picone [4] proposed a

method of the form

(8.2) Cun+l = (C - A)un+f,

where C is an arbitrary non-singular matrix. This is the process (8) if we take

B = I and C an arbitrary continuously invertible operator in space X. Theorem

2 and Corollary 2 extend the applicability of (8.2) to linear operator equations in

X and supply it with the corresponding error estimates provided that

T = C~\C - A)

satisfies the specified condition. Recently Frey [6] generalized the process (8.2)

to a special kind of nonlinear operator equations in Banach space under the as-

sumption that Mo = C~lf and \\ T \\ < 1, where T is in this case nonlinear.

Method 8. If C = 7 and B is an arbitrary continuously invertible operator in

X, then (8) reduces to the method

(8.3) un+1 = (7 - BA)un + Bf

whose convergence and error estimate were obtained by Rail [13] under the as-

sumption that T = I — BA satisfies the stringent condition (2.3). In the case

in which A is a nonsingular matrix and B = D~, where D is a diagonal matrix,

method (8.3) was first used by von Mises and Polaczek-Geringer [10]. Our Theorem

2 and Corollary 2 extend the validity of method (8.3) to operator equations for
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which the operator T satisfies the weaker conditions (2.2), (2.1), or even the

general condition (2).

Method 4- Let A be of the form A = D — S — Q and ubea positive real num-

ber. If we take C = D - uS and B = ul, then L = (1 - co)7> + oQ and (8)

reduces to the generalized overrelaxation iterative method

(8.4) (D - wS)un+i = [(1 - u>)7> + wQ]un + co/

whose convergence and error estimates (9) and (10) were obtained by the author

[11] in the case in which X = 77 under the assumption that A is 7i-positive definite;

i.e., there exists a linear operator K and a constant ß > 0 such that (Au, Ku) ^

ß || Ku ||2 for all u £ 77, (Du, Ku) is real for all u, G(u) = —— 7) - S + Q*

(where Q* is the adjoint of Q) is if-positive definite, and D — wS is continuously

invertible.f Under these conditions it is shown that

T = (D - wSr'ld - U)D + coQ]

satisfies condition (2.2)ff provided that K and a(T) satisfy the conditions speci-

fied in [11]. In the case in which Q = S*, K = I, and A is a finite matrix, (8.4)

was thoroughly investigated by Young [19].

Method 5. If A = D - S - S* and if we choose C = D - S and B = I, then
L = S   and (8) becomes the Gauss-Seidel method

(8.5) (D - S)un = S*un + f

for which Section 1 supplies the convergence and error estimates when (8.5) is

applied to operator equations in X. For example, if D = I, Fredholm integral

equations of the second kind in the LP(a, b)-spaces 1 ^ p < =° can be split in

this way. This can also be done for the space C(a, b).

Method 6. Let A = N — P, where N is continuously invertible, and a ¿¿ — 1

be a real number. If we choose C = (1 + a)N and 5 = 7, then L = P + aN and

(8) reduces to the procedure

(8.6) (7 + a)Nun+i = (P + aN)un + f

proposed by Keller [9] for finite matrix equations and extended by the author [ll]

to operator equations in 77 for the case when a(N~xP) contains only eigenvalues

X of finite multiplicity such that either X<lorX>lifX are real and either ReX < 1

or R„\ > 1 if X are complex.

Method 7. Suppose A = 7 — W — V and a and ß are two real non-zero param-

eters. In case WV = VW and W and V are finite symmetric matrices Keller [8]

studied the following method

(8.7) (ai - ßW)un+1 = [(a - 1)7 - (ß - \)W + V]un + f.

t The cases when A is only K-positive and X-non-negative as well as the problem of opti-

mum parameter « for (8.4) ,are also considered in [11].

ft Added in proof: The results containing much more general necessary and sufficient

conditions for the spectrum a(T) of T{o>) to lie in the interior of the unit circle were since ob-

tained by the author and will be contained in an article to appear in the Proceedings of Amer.

Math. Soc.
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In view of Theorem 2 and Corollary 2, the method (8.7) is also applicable to oper-

ator equations in X since it is (8) with C = ai — ßW, B = 7, and

L = (a - 1)1 - (ß - 1)W + V = C - A

provided, of course, that C and T = CT^L = 7 — (a — ßWy^A satisfy the corre-

sponding conditions for suitably chosen a and ß.

This will be the case if, for example, we assume that X is a Hilbert space 77;

the operators W and V are completely continuous, symmetric, and commutative ;

the number - is not an eigenvalue of W; A is positive definite; and the set of eigen-

vectors of W and of V is complete in 77. Indeed, if W and V satisfy these properties,

then C - ßi- I — Wjis continuously invertible and furthermore one can generalize

to the Hilbert space H the following lemma which allows us to extend the argu-

ments and the results A Keller [8] to the case when (8.7) is applied to the solution

of the operator equation (1) in 77 in which A = I — W — V.

Lemma. If V and Win H sasisfy the above conditions, then they possess a complete

set of common eigenvectors {fa}™ such that W<t>i = &0, and V<j>i = t;^, , i = 1, 2, • • • ,

where £,• and rn are the corresponding eigenvaleus of W and V.

Proof. Since W is symmetric and completely continuous each of its eigenvalues

£,- is real and has a finite multiplicity nt. Suppose that {f ¡}, where each £, appears

n,- times, are so ordered that {| £, |} is a non-increasing sequence. Let 77, be the

eigenspaces of W corresponding to the eigenvalues £,- ; i.e., 77, is the n,-dimensional

set of all m in 77 such that Wu = ¿,-w, which is the same as to say that 77, is the

null-space of the operator Wt = W — £.7. It is known [16] that 77,- is orthogonal

to H i for i í¿ j and that the direct sum of 77¿ is the whole space 77.

We shall now construct a complete set of eigenvectors {<£,}i°° common to both

W and V. Let us fix i, say i = 1. It is obvious that WV = VW implies that WiV =

VWi. Hence, the null-space Hx of Wi and the range Ri of Wx are invariant under

V; i.e., F77i c 77i and VRX C Rx. Since Rx is an orthogonal complement of Hi in

77, H = 77i © Ri, the pair (77x, Ri) reduces V and, therefore, V can be repre-

sented on 77i as an nx X nx symmetric matrix. This implies that V considered in

77i possesses nx eigenvectors <f>i, fa, ■ • ■ , <j>ni which span 77i and can be chosen to

be orthonormal. The elements fa , fa , • • • , fa,, are also eigenvectors of W since by

assumption all vectors of Hx are eigenvectors of W corresponding to the eigenvalue

& . Now, considered only on ñ¡ = 77 0 Hi, the operators W and V have the

same property as originally on 77. We may therefore proceed with this process by

applying it to Ri instead of 77 and replacing 77i by 772 and thus obtain a common

set of eigenvectors fa¡+i, fa,+i, ■ ■ ■ , fa2 of W and V in H2. Continuing this process

sequentially for i = 1, 2, 3, •• -, we obtain a complete sequence of eigenvalues

fa , ■ ■ ■ , fan , fal+i, • • • , 0„2 , • • • , common to both W and V.
In view of our lemma one can extend the procedure of Keller to show that for

any positive definite operator A = I — W — V there exist open regions in the

a 1
(x, y)-plane,f where x = - and y = - , such that for all (x, y) in these regions

p a

the operator C — ai — ßW is continuously invertible and T = I — (ai — ßW)~yA

satisfies condition (2.2).

f For the description of these regions and other details see [8].
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For the rest of this section we shall assume that A = I — r¡K, where 77 is a

numerical parameter and K acts in X. In what follows we shall, for the sake of

completeness, reformulate in terms of our conditions the iterative methods surveyed

by Rail [13].
Method 8. The simplest procedure is that of Neuman [5]

(8.8) w,+i = i)Kun + /

which is (8) with C = 7, B = 7, and T = rjK. The two practically useful condi-

tions on T are (2.2), which in our case reduces to the requirement that I n | <    ,_
r(K)

and the more restrictive condition (2.3): \r¡\ < . In case K is completely

continuous and symmetric these conditions reduce to the same requirement

(17) M < I uil,

where vi is, in absolute sense, the smallest characteristic value of K.

Method 9. If K is a positive definite and symmetric integral operator condition

(17) was removed by Wiarda [18] who used the iteration

(8.9) un+i = [61 + (1 - d)r,K]un + (1 - 6)f, 0 * 1.

Formula (8.9) is (8) with C = I, B = (1 - 6)7, and T = el + (1 - d)vK.
Bückner [2] extended the investigations of Wiarda to nonsymmetric integral

equations while Schönberg [15] generalized their results to the operator equations

in a Banach space with T satisfying condition (2.1).

Method 10. If B = 7 and C~l = -=-, where K is an integral operator in
x — vKx

a suitably chosen space X, and x — 1, then (11) becomes the method proposed by

Wagner [17]

(8.10) Un+i = (I - C~lA)un + C~lf.

Method 11. As the final special case we consider the method

(8.11) Un+i = [I - (I + J)A]un + (1 + J)f

studied by Samuelson [14]. Formula (8.11) is (8) if we choose C = I, B = I + J,

where J is such an operator that T = I — (I -\- J)A satisfies any one of our con-

ditions in Section 1. It was suggested by Samuelson that j should be taken to be

an approximation to the resolvent (?„ of rjK. Let us note that since

T = [A'1 - (I + J)]A = (G, - J)A

it follows from the properties of spectral radii [16] that if Kj — JK, then

T = (G, - J)A = A(G„ - J)       and       r(T) ^ r(G, - J)-r(A).

This shows that T satisfies condition (2.2) if J is so chosen that r(G„ — J) < -7-...
r(A)
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