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As we can see, the agreement with the desired value, u(t) = 1, is excellent.

7. Discussion. Consider a system of renewal-type equations, given, say, in

matrix form:

(7.1) X(t) = F(t) + [ K(t - s)X(s) ds.

Equations of this type arise naturally in the study of multidimensional branching

processes; see [6], [7].

If X(t) is a 5 X 5 matrix, we are required to store 25 functions (i.e., the elements

%a(t), i,j = 1, 2, ■ • • , 5) if we proceed in the usual fashion. If high order accuracy

were required—say, intervals of 1Q-3 over 0 | ¡ g 5—we would find that rapid-

access storage capacity would be exceeded.

On the other hand, if we use the foregoing technique, differential approximation

of order 5 would lead to the task of solving about 250 simultaneous differential

equations plus those required to determine F(t). This is a simple matter for a

modern computer. Furthermore, it is clear that we could use an approximation of

order 10 without coming close to the storage capacity.
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On the Numerical Solution of Equations of
the Abel Type

By Henry E. Fettis

The integral equation known as Abel's has the general form

(1) fix) = f g(t)(x - i)"" dt
Jo

where a is a real number, and

0 < a < 1.

Received August 20, 1963.



492 HENRY  E.   FETTIS

The function/(x) is supposed known and it is required to find the function g(t).

The solution is known to be [1] :

(2) g{x)=s™J^l\¿ f mix - ty-1 dt]
air      \_dx Jo J

Because of the singularity, the differentiation can not be carried out explicitly.

However, if an integration by parts is first made, Equation (2) takes the form

(3) g(x) = !Ef?^ !>/(()) + j[V(0(* - t)adt]

and if it is assumed that/(i) is finite, the differentiation under the integral can be

performed and we get

f(o)x^+ ffiDix-tr-'dt.
Jo

While both Equations (2) and (4) give the theoretically correct solution to Abel's

equation, neither are suitable to compute from in problems where no explicit mathe-

matical expression for fix) is known. First, there is the problem of the singular

behavior of the integrand when t = x, and while this may be circumvented in

several ways, either by an algebraic substitution which removes the singularity or

by use of a quadrature formula which inherently takes into account the nature of

the singularity (see e.g. [2]), there is an even greater barrier to the numerical prob-

lem, namely the fact that both expressions depend not on fix), but on its deriva-

tive. In fact, it is most often the case that f(x) is obtainable only from measured

data and, as is well known, the determination of accurate derivatives in such

instances is extremely difficult, if not impossible. We, therefore, need a form of

the solution in which/(x) does not appear, and such a solution may readily be ob-

tained if the integration by parts of Equation (4) is carried out in a somewhat

different manner; namely, let

u = (x — £)a-\ dv = fit) dt,

du=   -(a - l)(x - t)"-2dt, v =/(<)-/(*)•

[fit) - f(x)\[(x - ty-x

+ (i-a)r/wzM(,-¡ri
Jo x — t J

or

(a\ Í    \ Sin OTT f   a-1,,    , , v    fXf(x)   - f(t)    , ,\«-l   ,.
(6)       gix) =-   x   fix) + (1 - a) /   -J-— ix — t)      dt .

TV |_ Jo X   —   t

It will be noted that while (6) inherently implies the existence oí fix) in some

sense in order that the limiti-,* [ifix) — fit))fix — t)] be defined, it does not ex-

plicitly involve the derivative in any way. Thus, the only difficulty in evaluating

Equation (6) numerically by quadrature would arise if it became necessary to

(4) lix)
Sin air

Then, Equation (4) becomes

(5)

(X) = s2^ /(O)*""1 -
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evaluate the integrand at the point t = x. This would indeed be the case if a "closed"

quadrature formula (i.e., one which involves the end points) were used. However,

other quadrature formulae are available which do not require knowledge of the

integrand except at interior points of the interval of integration, and, of these,

perhaps the most suitable is the Gaussian type. Here the approximate value of

the integral is expressed as a linear combination of the integrand (not including

the singular term ix — t)""1) evaluated at properly selected points and multiplied

by appropriate weighting factors. (See e.g. [3].)

For this purpose, it is more convenient always to have a fixed interval of in-

tegration, and to this end we set

t = x(l — u)

and direct attention to the integral involved in Equation (6) in the form

r'fix) -flxii -«)]„-*
(7) - [

Jo
du.

To determine the ordinates and weight factors for the Gaussian quadrature of the

above integral we need to find the zeros of that set of polynomials 3nia, u) which

are orthogonal on (0, 1) with respect to u"~ as weighting function. These poly-

nomials therefore satisfy the relation

(8) /    u" 1'Smia, u)5nia, u) du = 0
Jo

whenever m 9a n. They belong to a more general class of orthogonal polynomials

known as the Jacobi Polynomials which satisfy a similar orthogonality relationship

with respect to the weighting function

(9) ua~\l - u)"-\

The first four Jacobi polynomials for the case a = y are given below:

ïo(a, u) = 1,

rr   / \ 1 A    +    1ïi(a, u)  =  1-U,
a

cr I \        1        9 a + 2 „ jl (a + 2)(« + 3)    2Slid, u) = 1 - 2- u H-u ,
a a(a + 1)

x(        s        ,        „a +3       ,   „ (a +3)(a + 4)    2
ÍFa(a, u) = 1 — 3 -u + 3--.——-r-u

a ct(a -+- 1,)

_ ja +3)(a + 4)(a + 5)    ,

a(a + l)(a + 2) U '

The general expression for 3n is readily deduced by induction. All zeros of the EF„ are

real and lie in the interval 0 < u < 1. Further, if Ui is any such zero, and if

(10) H<=      *      f^^ldu,
ffn (Ui)  Jo U   —   Ui

then the integral
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„1

du
0

(11) [ ^(m)m^1
Jo

is approximated by

(12) #i4>(wi) + H4(ih) + ■■■ + Hn<t>iun),

and the approximation coincides with the exact value if <f> is a polynomial of degree

(2w — 1) or less.

Since the most frequently encountered value for a in Abel's equation is J, the

ordinates and weight factors for this case are listed in Table Al, Appendix 1, to

ten places, for n = 1 up to n = 8. The following example illustrates their use and

also demonstrates the accuracy obtainable with relatively few ordinates. The

equation considered is

(13) f ix - tyll2git) dt = e\
Jo

for which the explicit solution is

[3W2

1 + 2xl,V f      e"'2 dt .

For this example, Equation (4) takes the form

(15) vgix) = x~w [e* + f ^ (f ~ f"') t~W dt]

Table 1 gives the results using the Gaussian coefficients for selected values of n

Table 1

Tgix) as found from Equation (14)

rl/2

.0

1.0
1.5

rgix)

3.184593
5.060157

16.9132453

as well as the more exact values calculated from Equation (14). This table illus-

trates the high degree of precision which is attainable by the use of the present

method.
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x = .25

Table 1—Continued

Calculation of gix) from Equation (15)

one
point

.3333333

<t>iU)

.3079950

II,

irgix) = 3.184040

two
points

.1155871

.7415557
.3164127 1.3042903
.2930075 .6257097

' irgix) = 3.1845929

x = 1.0

one
point

two
points

.3333333 2.311644

.1155871

.7415557
2.567064
1.919435

irgix) = 5.029920

1.3042903
.6957097

irgix) = 5.060161

three
points

.0569391

.4371978

.8694994

2.6423418
2.2019707
1.8158532

.9358279

.7215231

.3426490

wgix) = 5.060157

x = 2.25

two
points

three
points

.1155871

.7415557
18.797264
10.382250

.0569391

.4371978

.8694994

20.03654
13.58656
9.36913

1.3042903
.6957097

wgix) = 16.90520

.9358279

.7215231

.3426490

irgix) = 16.91319

four
points

.0336483

.2761843

.6346775

.9221560

20.55933
15.89908
11.36443
8.99664

.7253676

.6274133

.4947621

.2024571

irgix) = 16.91325
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Appendix 1

Table Al

Ordinates and weights for Gaussian quadrature with weight function x~U2

[ x~ll2fix)dx S É Hifixi)
Jo <—i

n = 1

n = 2

» = 3

n = 4

n = 5

71 = 6

71 = 7

n = 8

1
2

1
2
3

1
2
3
4

1
2
3
4
5

1
2
3
4
5
(i

1
2
3
4
5
6
7

1
2
3
4
5
6
7
8

.33333 33333

.11558 71100

.74155 57471

.05693 91160

.43719 78528

.86949 93949

.03364 82681

.27618 43139

.63467 74762

.92215 66085

.02216 35688

.18783 15677

.46159 73615

.74833 46284

.94849 39263

.01568

.13530

.34494

.59275

.81742

.96346

.01167

.10183

.26548

.47237

.68426

.86199

.97275

.00902

.07939

.20977

.38177

.57063

.74931

.89222

.97891

34066
00117
23794
01277
80133
12787

58719
27040
11513
15370
20157
13332
57513

73770
05598
93686
10534
58202
73785
19743
42102

Hi

2.00000 00000

1.30429 03097
.69570 96903

.93582 78691

.72152 31461

.34264 89848

.72536 75668

.62741 32917

.44476 20689

.20245 70726

.59104 84494

.53853 34386

.43817 27251

.29890 26983

.13334 26886

.49829 40916

.46698 50730

.40633 48535

.32015 66571

.21387 86520

.94350 67278

.43052

.41039

.37107

.31440

.24303

.16031

.70238

.37890

.36520

.33831

.29919

.24925

.19031

.12450

.05430

77068
62274
67950
63344
71414
61744
92066

12208
68301
30388
19776
79425
70234
70479
49188


