
Solutions of the Diophantine Equation
x* + ys = z3 - d

By V. L. Gardiner, R. B. Lazarus and P. R. Stein

1. Introduction. In 1955, at the suggestion of Professor L. J. Mordell, Miller

and Woollett [1] investigated the integer solutions of the equation

(1.1) x3 + y3 + z3 = d

for all integers 0 < d ^ 100. These authors carried out a numerical search in the

range

(1.2) | a; |   S   \y\   ú   \z\   Ú 3200

with the help of the EDSAC computer at Cambridge University; their results are

tabulated in [1].

Mordell's original interest in this equation centered on the case d = 3 ; in particu-

lar, he wanted to know whether there existed solutions in addition to the known

triples x = y = z = 1 and x = y = 4, z = —5. For the range they considered,

Miller and Woollett showed that in fact no further solutions existed. As a result of

their happy decision to extend the search to other values of d, they discovered

several other interesting properties of equation (1.1). Perhaps the two most strik-

ing facts were the following:

(a) For d = 2, all solutions in the range (1.2) belong to the family:

(1.3) -Gt2,        -Qt3 + 1,        6t3 + 1.

(b) Over the range considered, equation (1.1) has no solutions for the

values d = 30, 33, 39, 42, 52, 74, 75, 84, 87.

With regard to (b), it should be remarked that, while it has long been known

[2] that equation (1.1) has no solutions if d is an integer of the form 9m ± 4, there

is no known reason for excluding any other integer (except, of course, d = 0). One

might be tempted to conjecture that all integers (except zero) not of the form

9m ± 4 can be expressed as the sum of three cubes, minus signs allowed. (If this

conjecture were true, it would solve the so-called "Easier Waring's Problem" for

cubes [2], since it would then follow that all integers can be expressed as the sum of

at most four cubes.) Miller and Woollett's results seemed to cast a certain doubt

on the soundness of such a conjecture; as will be seen below, further numerical

experimentation has served to make it unlikely that the conjecture is true.

2. The Present Calculation. In the fall of 1961, Professor S. Chowla suggested

to one of us (P.R.S.) that it would be of interest to investigate the case d = 3 for a

much larger range of (,r, y, z) values. Early in 1963 this suggestion was taken up

and a program was written for the Laboratory's I.B.M. STRETCH Computer to
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search for solutions of equation (1.1) in the equivalent form:

(2.1) x3 + if = z3 - d.

The range chosen was:

0 g x g y g 216 = 65,536,

(2.2) 0 < V ^ 216,       N = 2 - x,

0 <   \d\   á 999.

It wiU be observed that this range excludes negative values of x, y, z, although d

may have either sign. The small number of solutions (217 such) thus omitted were

calculated separately on the MANIAC II Computer.

3. Results. The actual solutions found are collected in a large table, a copy of

which has been deposited in the UMT file. A limited number of copies have been

retained by the authors for distribution to interested mathematicians. The table is

divided into three parts; Table I and Table II cover, respectively, the ranges

-999 S d ^ -2 and 2 ^ d g 999. Only "primitive" solutions are tabulated; these

are solutions in which x, y, z have no common factor. All "derived" solutions (the

terms go back to Miller and Woollett) can be recovered by multiplication: e.g., if

d, x, y, z is a primitive solution, the associated derived solutions are d = m3d, x =

mx, y = my, z = mz, m = — 1, ±2, ±3, • • • . Values of | d | which are themselves

cubes have been omitted from the present calculation. There is a large number of

solutions for each such case, and it was felt that their inclusion would make the

tables too long. The additional solutions mentioned in Section 2, those for which

one or two members of the triple (x, y, z) are negative, have been arbitrarily as-

signed to Table II (positive d). With these conventions, the total number of primi-

tive solutions found is 1873 for negative d and 2148 for positive d. Except for the

cubes \d\ = 1, 8, 27, 64 (which we do not list), our results are in exact agreement

with those of Miller and Woollett over the range they considered.

Finally, wTe have included a third table (Table III), which serves as a summary

of our results. With the cubes omitted, the column labelled "d" lists all integers

2 5S d ^ 999 which are not of the form 9m ± 4. For each such entry, the column

labelled N+ indicates the number of primitive solutions of (2.1) with d positive,

while iV_ gives the corresponding number of solutions for negative d. This table is

reproduced in the present paper (Table A).

4. Discussion, (a) For the range considered, there are 70 values of | d | for

which there exist no solutions of equation (2.1). In Table A these are indicated

by an asterisk. There are in addition 12 values of | d | which have only derived

solutions, viz :

| ci |   =24, 80, 192, 250, 375, 384, 480, 624, 744, 768, 808, 960.

52 of the 70 "excluded" integers are of the form 9m ± 3, 13 are of the form 9m ± 2,

4 are of the form 9m ± 1 and one (| d \   = 180) is divisible by 9.

One of the "excluded" values noted by Miller and Woollett has gone away,
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Table A

A\ AL .V, AL AL AL AL AL

2
3
6
7
0

10
11
12
15
16
17
18
19
20
21
24
25
20
28
29
30*
33*
34
35
36
37
38
39*
42*
43
44
45
40
47
48
51
52*
53
51
55
56
57
00
01
62
63
65
66
69
70
71
72
73
74*
75*
78
7!)
80
81
82
83
84*
87
88
89

23
1
4
1
2
3
4
0
2
1
4
3
2
4
3
0
2
1
3
4
0
0
5
5
3
2
1
0
0
4
1
1
2
2
2
0
0
3
4
8
1
2
2
1
5
5
4
1
1
2
9
1
5
0
0
1
3
o
2
1

12
0
1
3
0

90
91
92
93
96
07
98
99

100
101
102
105
106
107
108
109
110*
111
114*
115
110
li-
ns
119
120
123
124
126
127
128
129
132
133
134
135
136
i:57
138
141
142
143*
114
145
140
147
150
151
152
153
154
155
156*
159
160
161
162
163
164
165*
168
169
170
171
172
173

9
4
1)
2
0
5
2
7
3
4
0
1
3
1
3
7
0
2
0
2
2
3
0
4
0
2
1
8
5

13
2
1
3
4
2
0
5
1
2
1
0
4
1
2
1
0
2
2
9
3
5
0
1
4
8
3
4
4
0
1
4
3
7
0
1

10
3
2
0
1
4
2

11
0
2
1
0
2
2
1
5
0
2
0
1
0
0

10
0
2
0
1
2
4
3
1
0
4
5
1
1
0
0
1
0
0
2
1
3
1
1
2
1
5
0

13
0
4
2
8
0
2
0
0
2
0
5
3
1
0

174
177
178
179
180*
181
182
183
186
187
188
189
190
191
192
195*
196
197
198
199
200
201
204
205
206
207
208
209
210
213
214
215
217
218
219
222
223
224
225
226
227
228
231*
232
233
234
235
236
237
240
241
242
243
244
245
246
249
250
251
252
253
254
255
258
259

2
1
1
1
0

11
2
3
1
1
6
4

10
2
0
0
2
0
4
2
1
0
1
2
1
4
1
8
1
1
2
4
0
4
1
0
5
2

10
2
0
1
0
4
2
0
2
2
0
1
0
5
1
0
2
2
1
0

3
1
1
4
0
8
2
6
1
2
3
2

11
2
0
0
4
0
2
3
1
1
1
1
2
5
3

10
1
1
2
1
4
2
1
1
3
3
5
5
1
0
0
3
2
1
4
1
2
0
1
3
1
3
3
4
1
0
7
5
4
0
1
0
5

200
201
262
263
264
207
268
269
270
271
272
273
276
277
278
279
280
281
282
285
286
287
288
289
290*
291.
294
295
296
207
298
299
300
303
304
305
306
307
308
309
312*
313
314
315
316
317
318*
321*
322
323
324
325
320
327
330
331
332
333
334
335
336
339
340
341
342

0
3
3
1
0
2
0
4
2
5
4
1
0
5
3
7
3
7
0
1
2
0
3
2
0
1
1
5
2
1
0
1
0
1
2
3
4

11
1
3
0
2

12
7
9
0
0
0
5
7
2
3
1
1
5
4
1
4
1
2
0
2
1
0
0)

4
2
0
1
3
1
1
3
1
2
5
3
1
0
5
9
5
4
1
2
2
7
8
1
0
0
3
0
1
2
2
2
4
1
4
3
4

11
1
2
0
0
3
4
4
2
0
0
2

15
3
2
1
0
1
0
4
0
2
5
2
3
0
3

15
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Table A—Continued

AL AL AL AL AL AL AL AL

344
345
348
349
350
351
352
353
354
357
358
359
360
301
302
363
366*
367*
308
309
370
371
372
375
376
377
378
379
380
381
384
385
386
387
388
389
390*
393
394
395
396
397
398
399
402
403
404
405
406
407
408
411
412
413
414
415
416
417
420*
421
422
423
424
425
426

3
1
0
4
4
4
2
2
1
2
1
5
3
3
1
1
0
0
1
5
3
2
2
0
1
4
7

11
3
1
0
5
5
5
4
1
0
1
0
1
2
5
5
2
0
1
2

15
6
0
1
1
1

429
430
431
432
433
434
435*
438
439*
440
441
442
443
444*
447
448
449
450
451
452*
453
456
457
458
459
460
461
462*
465
466
467
468
469
470
471
474
475
476
477
478*
479
480
483
484
485
486
487
488
489
492
493
494
495
496
497
498
501*
502
503
504
505
500
507
510
511

0
2
1
1
5
9
0
1
0
1

10
6
1
0
4
1

11
2
1
0
0
2
2
2
2
3
5
0
0
1
6
G
6
4
1
1
2
5
5
0
1
0
1
3
1
3
0
0
2
1
2
1
7
5
1
2
0
1
7
1
5
2
1
3
7

2
2
2
2

12
3
0
1
0
1
3
3
0
0
2
3
9
3
2
0
1
2
2
1
2
1
6
0
3
1

12
3
8
2
0
1
9
7
3
0
1
0
0
5
1
6
2
1
5
0
3
3
4
0
3
1
0
0
3
1
8
2
2
1
4

513
514
515
516*
519
520
521
522
523
524
525
528
529
530*
531
532
533
534*
537
538
539
540
541
542*
543
546
547
548
549
550
551
552
555
556*
557
558
559
560
561
564*
565
566
567
568
569
570
573
574
575
576
577
578
579*
582
583
584
585
586
587
588*
591
592
593
594
595

2
1
2
0
6
2
7
1
2
8
2
0
1
0
8

10
1
0
0
(i
(i
5
8
0
1
1
3
0
3
2
3
0
0
0
3
8
0
6
2
0
0
4
4
1
2
0
1
0
7
1
S
1
0
2
1
0
1
3
3
0
2
0
4
6
2

1
0
2
0
4
0
8
1
3
2
2
1
0
0

10
10
5
0
2
1
4
7
5
0
1
1
7
3
1
1
2
1
1
0
3
5
o
4
2
0
1
3
4
2
2
4
1
3
8
2
1
2
0
1
0
3
1
2
4
0
o
1
1
3
2

596
597
600*
601
602
603
604
605
606*
609*
610
011
612
613
614
615
618*
619
020
021
622
623
624
627*
628
629
630
631
632
633*
(¡30
637
638
639
640
041
642
645
646
647
648
649
650
051
054
655
656
657
658
659
660*
663*
664
665
666
667
668
669
672
673
674
675
070
677
078

4
0
0
8
4

13
0
1
0
o
o
o
2
3
0
4
0
1
2
2
5
0
0
0
o

12
7
0
1
0
1
2

11
5
1
1
1
4
2
0
1
5
2
5
1
1
4

10
8
4
0
0
5
7
5
3
2
O
1
3
4
0
1
3
2

1
1
0
4
0
6
4
2
0
0
5
3
4
2
1
1
0
2
1
0
2
4
0
0
2
9
1
0
3
0
0
2

13
5
3
0
0
3
0

0
2
1
2
3
5
5
2
0
0
0

10
4
4
2
2
1
5
3
1
0
1
5
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Table A—Continued

AL AL AL AL AL A\ N.

081
682
(¡S3
(¡84
685
686
087
(¡90
091
692
(¡93
094
695
696
699
700
701
702
703
704
705
708
709
710
711
712
713
714
717
718
719
720
721
722
723
726
727
728
730
731
732*
735*
736
737
738
739
740
741
744
745
746
747
748
749
750
753
754*
755
750
757
758*
759
762
763
764

1
2
0
0
8
1
2
2
1
5
3

10
1
0
1
2

13
0
3
1
0
1
2
1
l
3
4
3
1
0
2
7
5
2
1
1
4
5
3
1
0
0
5
1
2
3
3
2
0
1
2
1
5
2
1
1
0

17
0
8
0
0
2
0

0
1
2
2
5
0
4
0
1
4
G

12
1
1
1
2
5
2
7
O
1
O
O
5
2
O
3
1
O
1
2
O
7
9
1
O
4
1
O
2
O
O
G

2
O

2
2
O
O
1
5
1
8
4
O
O
O

11
2
2
O
1
O
5
4

765
766
767*
768
771
772
773
774
775
776
777*
780
781
782
783
784
785
786*
789*
790
791
792
793
794
795*
798
799
800
SOI
802
803
804
807
808
809
810
811
812
813
816
817
818
819
820
821
822
825
826
827
828
829
830*
831
834*
835
836
837
838
839
840
843
844
845
846
847

13

4
1

10
4
3
O
O
O
2
O
4
3
8
1
O
1
O
4
O

1
4
O
O
2
O
4
2
5
O
O
O
2
2
3
2
5
O
O
1
1
7
1
O
O
5
3
1
4
1
1
2
O
O
O
3

12
2
2
O
O

14
2

13
2
O
3
O
7
2
3
O
2
O
1
1
5
1
1
2
1
2
2
7
2

848
849
852
853
854
855
856
857
858
861*
862
863
864
865
866
867
870*
871
872
873
874
875
876
879
880
881
882
883
884
885

890
891
892
893
894*
897
898
899
900
901
902
903*
906*
907
908
909
910
911
912*
915
916
917
918
919
920
921*
924
925
926
927
928
929
930

7
2
O
O
6

12
2
5
1
O
3
4
3
1
2
4
O
O
O
5

12
2
2
3
O

10
3
O
O
2
1
1
2
3
5
1
O
O
2
G
1
4
5
O
O
2
O
5
1

13
O
O
1
4

10
O
o
o
3
4
3
1
2
0
0

1
0
1
5
2

15
5
2
0
O
7
3
1
2
1
3
O
1
2
3

11
3
3
4
2

12
7

10
1
3
O
1
3
O
•■',

2
O
1
O
O
2
2
4
O
O
2
1
7
O
8
O
1
2
3
5
2
1
O
1
4
2
3
1
1
3

933*
934
935
936
937
938
939
942
943
944
945
946
947
948*
951
952
953
954
955
956
957
960
901
962
963
964*
905
966
969*
970
971
972
973
974
975*
978
979
980
981
982
983
984
987

990
991
992
993
996
997
998
999

O
O
7
2

10
4
O
O
3
1
2
8
2
O
2
2
5
2
2
3
4
O
4
2
5
O
5
1
O
2
O
4
5
1
O
O
4
5
4
1
3
3
1
5
7
3
4
O
2
O
3
4
2
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namely  \d\   = 87. The solution lies slightly beyond the range they considered:

(1972)3 + (4126)3 = (4271)3 - 87.

For \d\ = 96, Miller and Woollett found only one derived solution. There is

actually a primitive solution for this case, but it lies well beyond their range :

(10853)3 + (13139)3 = (15250)3 + 96.

In general, it is rather risky to draw conclusions from the experimental evidence,

even with a search as extensive as the present one. For example, \ d\ = 227 and

| d | =971 each have only a single solution, lying relatively close to the boundary

of the search region :

(24579)3 + (51748)3 = (53534)3 + 227

(7423)3 + (55643)3 = (55687)3 + 971.

Many other such examples can be found in our large table of solutions. Neverthe-

less, it is in our opinion rather unlikely that all the missing | d |'s will turn out to

be expressible as sums of three cubes. It would be of interest to attempt a proof

that, say, 30 cannot be so expressed.

(b) All solutions for | d | =2 were found to belong to the parametric family

(1.3). So far we have only succeeded in identifying one other family which is, in

fact, a simple extension of (1.3). For \ d\ = 128, all solutions are given by the

formula:

(4.1) x = 6¿2,       y = -4 + 3¿3,       z = 4 + 3t3,       d = 128.

If t is even, the solutions are the derived ones associated with d = 2, m = 4, but

for odd t we get a new primitive family. (The existence of this parametric family

was noted in [1].)

(c) The case \d\ =3 was found to have no new solutions. \d\ =12 may

also be of theoretical interest ; it is the smallest integer that appears to have only a

single solution:

73 + 103 = ll3 + 12.

The next interesting case is \d\ =24, which, in fact, has only the derived solu-

tions :

(-2)3+ (-2)3 = (2)3-24,
83 + 83 = 10s + 24.

Then, of course, comes \d\ =30, the smallest integer for which no solution what-

soever has been found.

(d) As a final remark, we point out that our table affords an explicit decomposi-

tion into 4 or fewer cubes for every integer from 1 to 999. In particular, every num-

ber of the form 9m ± 4 in our range turns out to differ by a cube from a number

for which one or more decompositions into 3 cubes has been found.
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