Stabilizing Predictors for Weakly Unstable Correctors

By Hans J. Stetter

1. Introduction. It is well known that Milne-Simpson's method

$$
\begin{equation*}
y_{n+2}=y_{n}+\frac{h}{3}\left(f_{n}+4 f_{n+1}+f_{n+2}\right) \tag{1}
\end{equation*}
$$

should not be used for the numerical integration of $y^{\prime}=f(x, y)$ if $f_{v}<0$ along the true solution $y(x)$ although the solution of (1) converges to $y(x)$ for fixed finite x as $h \rightarrow 0$ (see, e.g., [1]). In fact, rapid oscillations, with an amplitude increasing exponentially as the numerical integration proceeds, will supersede the values approximating $y(x)$ and eventually destroy the meaningfulness of the computation. This "weak unstability" occurring with (1) and similar algorithms has been well , analyzed (e.g., [1, p. 248 ff.$]$) and procedures have been suggested to weaken its effect (e.g., [2]). We will show in this paper that it is quite easy to completely eliminate its cause: The combination of a judiciously chosen predictor with the weakly unstable corrector constitutes a strongly stable algorithm if the corrector is not iterated.
2. Analysis. Consider the k-step scheme

$$
\begin{equation*}
\rho(E) y_{n}-h \sigma(E) f_{n}=0, \tag{2}
\end{equation*}
$$

where $\rho(z):=\sum_{v=0}^{k} \alpha_{2} z^{\nu}, \alpha_{k}=1 ; \sigma(z):=\sum_{v=0}^{k} \beta_{v} z^{\nu} ; E y_{n}:=y_{n+1} ; f_{n}:=f\left(x_{n}, y_{n}\right)$.
(2) is called D-stable ${ }^{1}$ or stable for $h \rightarrow 0$ if all zeros of ρ are in $|z| \leqq 1$ and no multiple zeros are on $|z|=1$. (2) is of order p if, for a sufficiently differentiable function y,

$$
\rho\left(E_{h}\right) y(x)-h \sigma\left(E_{h}\right) y^{\prime}(x)=O\left(h^{p+1}\right),
$$

where $E_{h} y(x):=y(x+h)$.
It is well known (e.g., [1]) that the sequence y_{n} generated by a D -stable scheme (2) of order $p \geqq 1$ converges in an obvious sense to the solution $y(x)$ of $y^{\prime}=f(x, y)$ as $h \rightarrow 0$. It is more difficult to predict the behavior of the y_{n} for finite h as weak instabilities may occur.

Denoting by $\zeta_{\nu}(H), \nu=1(1) k$, the zeros of the polynomial

$$
\begin{equation*}
\varphi(z, H):=\rho(z)-H \sigma(z), \tag{3}
\end{equation*}
$$

we know from [1, p. 238], that for a scheme (2) of order p there is one zero, which we will always denote by $\zeta_{1}(H)$, which satisfies

$$
\begin{equation*}
\zeta_{1}(H)=e^{H}+O\left(H^{p+1}\right) . \tag{4}
\end{equation*}
$$

For a given value of H (real) we will call a D-stable scheme (2) strongly stable if ${ }^{2}$

[^0]\[

$$
\begin{equation*}
\left|\zeta_{\nu}(H)\right| \leqq \zeta_{1}(H), \quad \nu=2(1) k \tag{5}
\end{equation*}
$$

\]

and weakly unstable otherwise.
Each D-stable scheme is strongly stable for $H=0$, by continuity there will be a largest number $H^{+} \geqq 0$ and a smallest number $H^{-} \leqq 0$ such that (2) is strongly stable for each H from the stability interval $\left[H^{-}, H^{+}\right] .{ }^{2}$

It is evident for constant $g(x):=f_{y}(x, y(x))$ and confirmed by experience for variable g that the solution y_{n} of (2) simulates the behavior of $y(x)$ if $h g$ remains within the stability interval. For a weakly unstable scheme (e.g., MilneSimpson's method (1)) $H^{-}=0$ and the method should not be used for $g<0$.

If $\beta_{k} \neq 0,(2)$ defines y_{n+k} implicitly and is usually replaced by the predictorcorrector scheme ${ }^{3}$

$$
\begin{align*}
& y_{n+k}^{(0)}=-\sum_{\nu=0}^{k-1} \alpha_{\nu}^{*} y_{n+\nu}+h \sum_{\nu=0}^{k-1} \beta_{\nu}^{*} f_{n+\nu} \\
& y_{n+k}^{(i)}=-\sum_{\nu=0}^{k-1} \alpha_{\nu} y_{n+\nu}+h\left(\sum_{\nu=0}^{k-1} \beta_{\nu} f_{n+\nu}+\beta_{k} f\left(x_{n+k}, y_{n+k}^{(i-1)}\right)\right), \quad i=1(1) m \tag{6}
\end{align*}
$$

A simple computation shows that for the algorithm (6) the polynomial (3) is transformed into ${ }^{4}$

$$
\begin{equation*}
\varphi^{m}(z, H):=\left(1-B^{m}\right)(\rho(z)-H \sigma(z))+B^{m}(1-B)\left(\rho^{*}(z)-H \sigma^{*}(z)\right) \tag{7}
\end{equation*}
$$

with $B:=H \beta_{k}, \rho^{*}(z):=\sum_{\nu=0}^{k} \alpha_{\nu}{ }^{*} z^{\nu}, \alpha_{k}^{*}=1, \sigma^{*}(z):=\sum_{\nu=0}^{k-1} \beta_{\nu}{ }^{*} z^{\nu}$. Obviously $\lim _{m \rightarrow \infty} \varphi^{m}(z, H)=\varphi(z, H)$ if $|B|<1$.

Assume that the predictor is of order $q \geqq 0$. It is clear from (3), (4), and (7) that the zeros $\zeta_{\nu}{ }^{m}$ of φ^{m} satisfy (after a suitable ordering)

$$
\begin{align*}
& \zeta_{1}^{m}(H)=e^{H}+O\left(H^{p+1}\right)+O\left(H^{q+m+1}\right) \\
& \zeta_{\nu}^{m}(H)=\zeta_{\nu}(H)+O\left(H^{m}\right) \tag{8}
\end{align*}
$$

For all weakly unstable schemes of practical importance the violation of (5) for $H<0$ is a first-order effect in H, hence only the zeros $\zeta_{\nu}{ }^{1}$ of φ^{1} may possibly not share the undesirable behavior of the $\zeta_{\nu .}{ }^{5}$ Therefore we may restrict our considerations to the case $m=1$; we will-for given weakly unstable schemes-attempt to select $\left(\rho^{*}, \sigma^{*}\right)$ such that the stability interval for φ^{1} has $H=0$ as an interior point.

Remark: Some authors (e.g., [5]) replace (5) by $\left|\zeta_{\nu}(H)\right| \leqq 1$ in the definition of a stability interval. This seems not appropriate since, e.g., a 2 -step scheme with $\zeta_{2}(H)=-1-H / 2+O\left(H^{2}\right)$ will also generate oscillations growing exponentially relative to the true solution if used for $y^{\prime}=-y$.
3. Selection of the Predictor. From now on we will only consider the polynomial $\varphi^{1}(x, H)$ and its zeros $\zeta_{\nu}{ }^{1}(H), \nu=1(1) k$, hence we will omit the superscript 1 . Furthermore we define $\zeta_{\nu 0}:=\zeta_{\nu}(0)$.

[^1]If $\left|\zeta_{\nu 0}\right|<1$ for a certain $\nu>1$, (5) has to hold in a full vicinity of $H=0$ by continuity. Therefore it suffices to consider $\nu \in W:=\left\{\nu: 2 \leqq \nu \leqq k,\left|\zeta_{\nu 0}\right|=1\right\}$. For $\nu \in W$, let

$$
\begin{equation*}
\left|\zeta_{\nu}(H)\right|=1+A_{\nu} H+B_{\nu} H^{2}+O\left(H^{3}\right) \tag{9}
\end{equation*}
$$

As $p \geqq 2$ in all cases of interest, (4) and (5) yield the following necessary condition:

$$
\begin{align*}
& \text { (a) } A_{\nu}=1, \\
& \text { (b) } B_{\nu} \leqq \frac{1}{2},
\end{align*} \quad \text { for } \nu \in W
$$

If the equality is excluded in (10b), condition (10) is sufficient as well to guarantee a stability interval with $H^{-}<0, H^{+}>0$. (For $B=\frac{1}{2}$, the third order terms would have to be investigated.) To find expressions for the A_{ν} and B_{ν} we derive, from

$$
\begin{align*}
\varphi^{1}(z, H) & =\left[\rho(z)-H\left(\sigma(z)-\beta_{k} \rho^{*}(z)\right)-H^{2} \beta_{k} \sigma^{*}(z)\right](1-B), \\
\zeta_{\nu}(H) & =\zeta_{\nu 0}+H \cdot \frac{\tau_{\nu}}{\rho_{\nu}{ }^{\prime}}+H^{2}\left[-\rho_{\nu}{ }^{\prime \prime} \tau_{\nu}{ }^{2} / 2 \rho_{\nu}{ }^{\prime}+\tau_{\nu} \tau_{\nu}{ }^{\prime}+\beta_{k} \rho_{\nu}{ }^{\prime} \sigma_{\nu}{ }^{*}\right] / \rho_{\nu}^{\prime 2}+O\left(H^{3}\right), \tag{11}
\end{align*}
$$

'where $\tau(z):=\sigma(z)-\beta_{k} \rho^{*}(z)$, the prime denotes differentiation, and $\rho_{\nu}:=\rho\left(\zeta_{\nu 0}\right)$, etc. $\rho_{\nu}{ }^{\prime} \neq 0$ for a D-stable scheme and $\nu \in W$. Let $\zeta_{\nu 0}=e^{i \omega_{\nu}}$, then (10a) becomes

$$
\begin{equation*}
\operatorname{Re}\left\{e^{-i \omega_{\nu}} \frac{\tau_{\nu}}{\rho_{\nu}^{\prime}}\right\}=1 \tag{12a}
\end{equation*}
$$

Since τ_{ν} is linear in the coefficients $\alpha_{\nu}{ }^{*}$ of ρ^{*}, for given ρ, σ, condition (10a) takes the form of a linear relation between the $\alpha_{\nu}{ }^{*}$ (which are assumed real) for each $\nu \in W$.

Condition (10b) becomes an inequality which is quadratic in the $\alpha_{\nu}{ }^{*}$ and linear in the $\beta_{\nu}{ }^{*}$: Using (12a) we have

$$
\begin{equation*}
\operatorname{Re}\left\{e^{-i \omega_{r}} \psi_{\nu}\right\}+\frac{1}{2}\left|\frac{\tau_{\nu}}{\rho_{\nu}^{\prime}}\right|^{2} \leqq 1 \tag{12b}
\end{equation*}
$$

where ψ_{ν} denotes the coefficient of H^{2} in (11). Since the corrector must not be iterated according to our analysis, the order q of the predictor must be no less than $p-1$ if the original order p of the corrector is to be maintained for the predictor-corrector scheme (6) with $m=1$ (see, e.g., [1, p. 259 ff .]). The requirement of a certain order q for the predictor generates $q+1$ homogeneous linear relations between the $\alpha_{\nu}{ }^{*}$ and $\beta_{\nu}{ }^{*}$. Thus the following procedure seems appropriate for the determination of a suitable $\left(\rho_{*}^{*}, \sigma^{*}\right)$ for a given weakly unstable scheme (2): Evaluate (12a) in terms of the $\alpha_{\nu}{ }^{*}$, then express ρ^{*} and σ^{*} in terms of the free parameters (if any) which are left after accounting for the order relations and (12a). Then interpret (12b) as a restriction in the space of these free parameters (or check its validity).

Remark: The same considerations can be carried through for $P(E C)^{1}$ algorithms. However, the details are more involved.
4. Application. For Milne-Simpson's 2 -step scheme (1) we have $\rho=z^{2}-1$, $\sigma=\left(z^{2}+4 z+1\right) / 3, p=4$, and $\zeta_{20}=-1$. As we have to require $q=3$, it seems futile to look for a stabilizing predictor with $k=2$ since the order relations alone
determine ρ^{*}, σ^{*} in this case:

$$
\begin{equation*}
\rho^{*}=z^{2}+4 z-5, \quad \sigma^{*}=4 z+2 \tag{13}
\end{equation*}
$$

Yet by a marvelous coincidence this is a predictor which does the trick:

$$
\begin{aligned}
-1 \cdot \frac{\sigma(-1)+\beta_{2} \rho^{*}(-1)}{\rho^{\prime}(-1)} & =+1 \\
-\psi(-1)+\frac{1}{2}\left(\frac{\tau_{2}}{\rho_{2}^{\prime}}\right)^{2} & =-\frac{1}{3}<1
\end{aligned}
$$

Therefore the algorithm

$$
\begin{align*}
& y_{n+2}^{(0)}=-4 y_{n+1}+5 y_{n}+2 h\left(2 f_{n+1}+f_{n}\right) \\
& y_{n+2}=y_{n}+\frac{h}{3}\left(f_{n+2}^{(0)}+4 f_{n+1}+f_{n}\right) \tag{14}
\end{align*}
$$

is a genuine 2 -step method of order 4 which is strongly stable for arbitrary H (as it turns out), i.e., it can be safely used for $g<0$ as well as for $g>0$. Numerical results which have been obtained with (14) are shown in Section 5 .

Admitting 3 -step predictors, we could at first try to achieve $q=4$: All predictors

$$
\begin{aligned}
\rho^{*} & =z^{3}+\left(8+\alpha_{0}^{*}\right) z^{2}-9 z-\alpha_{0}^{*} \\
\sigma^{*} & =\left[\left(17+\alpha_{0}^{*}\right) z^{2}+\left(14+4 \alpha_{0}^{*}\right) z-\left(1-\alpha_{0}^{*}\right)\right] / 3
\end{aligned}
$$

are of order 4 (see, e.g., [6, p. 201]), so it seems that we have one parameter left for the satisfaction of (12). However, upon introduction of the above ρ^{*} into (12a), the parameter $\alpha_{0}{ }^{*}$ drops out and the necessary condition cannot be satisfied: There is no stabilizing 3 -step predictor of order 4 . Among the 3 -step predictors with $q=3$ the following one-parameter family is found to be stabilizing:

$$
\begin{align*}
\rho^{*} & =z^{3}+\left(4+\alpha_{0}^{*}\right) z^{2}-5 z-\alpha_{0}^{*}, \\
\sigma^{*} & =\left[\left(12+\alpha_{0}^{*}\right) z^{2}+\left(6+4 \alpha_{0}^{*}\right) z+\alpha_{0}^{*}\right] / 3,
\end{align*} \quad \alpha_{0}^{*}>-3 . ~ \$
$$

For $\alpha_{0}{ }^{*}=0$, which is well within the stabilizing region, we recover our 2 -step predictor (13). Since the error term of (15) is $h^{4} y^{\mathrm{IV}} / 6$ independently of $\alpha_{0}{ }^{*}$ there is no indication why one should not choose the simpler predictor (13) and discard the 3 -step predictors.
5. Comparison with Runge-Kutta, Numerical Results. In the case of an equation $y^{\prime}=g y, g=$ const, the relative discretization error

$$
e_{\mathrm{r}}\left(x_{n}, h\right):=\left(y_{n}(h)-y\left(x_{n}\right)\right) / y\left(x_{n}\right)
$$

will behave approximately ${ }^{6}$ like $C g^{5}\left(x-x_{0}\right) h^{4}$ with

$$
C= \begin{cases}+\frac{1}{180} & \text { for the exact solution of (1) } \tag{16}\\ -\frac{1}{45} & \text { for the stabilized scheme (14) } \\ -\frac{1}{120} & \text { for the classical Runge-Kutta method. }\end{cases}
$$

[^2]Table 1
Relative discretization error $e_{\mathrm{r}}(x, h)$ for $y^{\prime}=-y$

x	$\stackrel{(14)}{=} 2^{-2}$	$\begin{gathered} \text { R.-K. } \\ h=2^{-1} \end{gathered}$	h	$x=10$	
				(14)	$\begin{aligned} & \text { R.-K. } \\ & \text { (with } 2 h \text {) } \end{aligned}$
2	. 000244	. 001585	2^{-1}	. 03571363	. 21131609
4	493	3172	2^{-2}	. 00124629	. 00794948
6	744	4762	2^{-3}	6407	40130
8	995	6355	2^{-4}	377	2260
10	1246	7949	2^{-5}	16	138
12	1498	9547	2^{-6}	1	7
14	1748	11152			
16	1999	12786			
18	2251	14390			
20	2503	16002			

Table 2
Relative discretization error $e_{\mathrm{r}}(x, h)$ for $y^{\prime}=-y^{2}$

x	$\stackrel{(14)}{=} 2^{-5}$	$\begin{gathered} \text { R.-K. } \\ h=2^{-4} \end{gathered}$	h	$x=10$	
				(14)	R.-K. (with $2 h$)
5	$36.7 \cdot 10^{-9}$	$34.9 \cdot 10^{-9}$	2^{-1}	. 001452234	-. 005307526
10	20.0	19.2	2^{-2}	96792	+ 18899
15°	13.9	13.4	2^{-3}	5657	4237
20	10.6	10.4	2^{-4}	334	299
			2^{-5}	20	19
			2^{-6}	1	1

Obviously, the stabilization of (1) has to be paid for by a loss in accuracy such that the stabilized version of (1) is less accurate than R.-K. However, basing the comparison on an equal number of evaluations of f for a given interval of integration (see [4]) we find that the error of (14) is only $\frac{1}{6}$ of that for R.-K. Hence we may expect that (14) is a rather effective fourth order method for the numerical integration of ordinary differential equations.

The following differential equations were solved by the predictor-corrector scheme (14) and by R.-K.: (a) $y^{\prime}=-y$, (b) $y^{\prime}=-y^{2}$, each with $y(0)=1$, for $x \leqq 20$. The value of $y(h)$ for scheme (14) was computed by one execution of R.-K.; this introduces an error of $O\left(h^{5}\right)$.

It is clear that the usual Milne-Simpson algorithm would have failed on both equations over such a long interval. ${ }^{7}$ With algorithm (14) not the least sign of an oscillation or an undue round-off accumulation was found on either differential equation. As to be expected from (16), for eq. (a) the error with (14) was less than

[^3]20% of that with R.-K. (and equal effort) throughout the interval and for all stepsizes used. Some numerical values are shown in Table 1.

For the nonlinear equation (b), the errors of (14) and R.-K. were practically equal for small stepsizes. For very large steps R.-K. was poorer, with decreasing h the discretization error changed its sign and became smaller (see Table 2). (This effect is caused by the complicated error terms of R.-K. which contain various derivatives of different order.) Due to this unsystematic behavior of the discretization error Richardson-extrapolation was not applicable for R.-K. while it worked well for (14) where the error decreased like h^{4} approximately for large and small h.

Acknowledgment. The preparation of this paper was stimulated through some results obtained by A. Neiss in a systematic experimental investigation on the effect of predictor-corrector interaction upon stability [7].

Mathematisches Institut
Technische Hochschule
München, Germany

[^4]
[^0]: Received May 27, 1964. The research reported in this paper was supported in part by the U.S. Air Force under Grant No. AF EOAR 63-77 through the European Office, OAR.
 ${ }^{1}$ For Dahlquist-stable (cf. [3]).
 ${ }^{2}$ See Remark at the end of this section.

[^1]: ${ }^{3}$ If the predictor reaches back farther than the corrector the degree k of the corrector has to be formally raised accordingly.
 ${ }^{4}$ This assumes a $P(E C)^{m} E$ algorithm (cf. [4]); for a $P\left(E()^{m}\right.$ algorithm the situation is more complicated. See footnote 5 , however.
 ${ }^{5}$ Since (8) holds equally for $P(E C)^{m}$ algorithms (see [4]) our conclusion is also true for this case.

[^2]: ${ }^{6}$ (16) takes into account the first term of the asymptotic expansion of the discretization error under the assumption that the initial errors are $O\left(h^{5}\right)$. For the values of C, see, e.g., [1].

[^3]: ${ }^{7}$ Although for eq. (b) the oscillations will grow only like $h(x+1)^{8 / 8}$ relative to the basic discretization error, this constitutes an intolerable disturbance for large x.

[^4]: 1. P. Henrici, Discrete Variable, Methods in Ordinary Differential Equations, Wiley, New York, 1962. MR 24 \#B1772.
 2. W. E. Milne \& R. R. Reynolds, "Stability of a numerical solution of differential equations. I \& II," J. Assoc. Comput. Mach., v. 6, 1959, p. 196-203 and v. 7, 1960, p. 46-56.
 3. G. Dahlquist, ""Convergence and stability in the numerical integration of ordinary differential equations," Math. Scand., v. 4, 1956, p. 33-53. MR 18, 338.
 4. T. E. Hull \& A. L. Creemer, "Efficiency of predictor-corrector procedures," J. Assoc. Comput. Mach., v. 10, 1963, p. 291-301. MR 27 \#4367.
 5. H. S. Wilf, "Maximally stable numerical integration," J. Soc. Indust. Appl. Math., v. 8, 1960, p. 537-540.
 6. R. W. Hamming, Numerical Methods for Scientists and Engineers, McGraw-Hill, New York, 1962. MR 25 \#735.
 7. A. Neiss, Untersuchungen zur Stabilität von Predictor-Corrector-Verfahren, Diplomarbeit, Techn. Hochschule München, 1964.
