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1. Introduction. Mikusiñski [17] has introduced a theory of generalized func-

tions which is algebraic in nature. Generalized functions are introduced in a way

which is analogous to the extension of the concept of number from integers to

rationals.

In this paper, an analogous theory of "generalized sequences" is constructed

for the discrete calculus. This theory serves a dual purpose. It provides a rigorous

foundation for an operational calculus and provides a powerful formalism for the

solution of discrete problems.

The algebraic formalism of generalized sequences is given in Sections 2 and 3,

while the relations between such operators as E, A, M, A"1, M-1 and certain gener-

alized sequences are discussed in Sections 4 and 8. Newton's interpolation formula

with a summation remainder, which is analogous to Taylor's formula with an in-

tegral remainder, is obtained in Section 6. A general solution of the nth-order

inhomogeneous difference equation with constant coefficients is given in Section 7,

in connection with which the reader is referred to the discussion of partial fraction

expansions in Appendix A. The discrete analogues of Heaviside's unit step function

and Dirac's delta function occur in a natural way and are discussed in Sections 9

and 10.
The relation between generalized sequences and such "classical" operational

methods as generating functions, Dirichlet transforms, and 2-transforms is dis-

cussed in Section 12. Automation of the solution of various types of linear problems

is discussed in Appendix B.

A few words on the use of the term "discrete calculus" are in order. A more

complete title might be "real functions of a discrete variable." This subject is

usually referred to as the "calculus of finite differences." However, the basic operator

of this calculus is the translation operator and not the difference operator. Moreover,

the word finite has various meanings. It sometimes means noninfinite, sometimes

nonzero, and sometimes noninfinitesimal. In the present context it refers to non-

infinitesimal and is a relic from the days of the "infinitesimal calculus."

Hence we refer to the subject as the discrete (as opposed to continuous) cal-

culus. We restrict ourselves to the case where the discrete variable takes on equally

spaced values on a half-line. It is sufficient to consider the case where these values

are the nonnegative integers and we therefore deal with sequences.

2. The Field of Generalized Sequences. Let <S be a set of sequences. Let

{/) £ S. Then

Í/I -/(0),/(l),/(2), ••• .

(This notation is used instead of f0, /i, ft to emphasize that we are dealing with a
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function of a discrete variable and to avoid the use of subscripts.) When there is

no danger of confusion, we write {/( as /. The notation /(\) is also used.

Two sequences are equal if

/(A) = g(\),        X = 0, 1,2, ••• .

Addition of sequences is componentwise. Thus

h=f+g

if

ä(X) =/(X) +g(\),       X = 0, 1,2, ••• .

Multiplication of two sequences is defined as their convolution. Thus

h = fg

if

ä(x) = E/(i)ff(x-i).

Concatenation of two sequences denotes their multiplication as defined above.

To indicate componentwise multiplication we use a dot. Thus

h=f-g

if

h(\) - /(X)g(X),       X = 0,l,2, ....

Our use of componentwise multiplication will be rare.

It is easy to verify that if /, g, h € S, then

l.f + g = g+f.
2.f+(g + h) = (ffg)+h.
3. / + x = g has a unique solution x Ç. S.

4. fg = gf.
5. f(gh) = (fg)h.
6. f(g + h) =fg+ fh.

Hence we have a commutative ring. The additive identity is 0, 0, 0, • • • . The

multiplicative identity is 1, 0, 0, • • • . We now show that our commutative ring

is an integral domain by verifying that if fg = {0}, / 9a {0}, then g = {0}. Thus,

by hypothesis,

E/OXx-i) = {0}.
J'=0

Assume /(0) ¿¿ 0. Then by successively setting X = 0, 1, 2, • • • , we calculate

g(0),g(l),g(2), • • • , to be zero.

Now assume /(0) = 0. Since / is not the zero sequence, there is a first element

/(m) 7* 0. Therefore

E/(i)?(X-j) = {0}.
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Then by successively setting X = m, m + 1, m + 2, • • • , we calculate ¡7(0),

0(1), fif(2), •• -, to be zero. Hence the result is proved.

In the continuous case, the analogous theorem, due to Titchmarsh, is highly

nontrivial.

Our ring is an integral domain and may therefore be embedded in a field. This

embedding is analogous to the embedding of the integral domain of integers in the

field of rational numbers.

For given / and g, there may or may not be a sequence x such that g = fx.

We define the fraction g/f, / ^ ¡0} as the solution of g = fx. The symbol g/f de-

notes the inverse to convolution. The solution is uniquely determined. For, let

g = fxi, g = fxi, / ?¿ {0}. Then {0} = f{xx - x2) and xi - x2 = {0}.

We call the equivalence class of fractions g/f generalized sequences. We shall

sometimes call them operators. Every sequence / may be written as a generalized

sequence fg/g, but not every generalized sequence is a sequence. A subset of the

field of generalized sequences is isomorphic to the ring of sequences. The scope

of generalized sequences is treated in Section 11.

Let/, h ?¿ {0}. Equality, addition, and multiplication are defined by

7=7     if and only if eh — fg,
S      h

ti = eJL
fh     fh'

e_ ,  9 = eh + fg

f      h fh     ■

Scalars are sequences of the form [a] = a, 0, 0, • • • . Observe that

[a] + [b] = [a + b].
(2.1)

[a][b] = [ab].

Scalars should not be confused with constant sequences

\a\ = a, a, a, • • ■ .

For constant sequences, we have

\a){b} = ab, 2ab, Sab, • • ■ ,

rather than (2.1). Scalars are isomorphic to numbers. Let <r denote the sequence

«r- 1,1,1,.-..

If ja) is a constant sequence, then the scalar [a] may be written as

a

Two important scalars were introduced above. They are

[0] = 0, 0, 0, • ■ • ,

[1] = 1, 0, 0, • • • .
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Observe that [0] s {0}. Since scalars are isomorphic to numbers we write [0]

and [1] as 0 and 1.

3. The Sequence co. Let « denote the sequence

o) = 0, 1, 0, 0, ••• .

The sequence co1 (where the power denotes a j-fold convolution) is the sequence

with a 1 in the jth position and 0 elsewhere. We define w° = 1.

The sequence

a= 1, 1, 1, ••• . -

was introduced in Section 2. Another important sequence is

»= 1,-1,1, -1, ••• .

The relation of co, a, v to the operators E~1, A-1, M~l of the discrete calculus is given

in Sections 4 and 8. Inverses to co, a, v are defined by

COT =  1,

(3.1) ap =  1,

vu =  1.

Direct calculation shows that p and p are sequences given by

P= 1,-1,0,0, ••-,

M =  1, 1, 0, 0, • • • .

On the other hand, t is not a sequence. It is a generalized sequence. The basic sequences

are summarized in Table 1.

Observe that

p = 1 — to,

(3.2)
p.  =   1 + CO.

Using (3.1) and (3.2), any of the six operators co, <r, v, t, p, or p, may be expressed

in terms of any of the other five. We elect to express these operators in terms of co.

Table 1

The Basic Sequences

Symbol

0
1
u
cr

V

p

Sequence

0, 0, 0, •••
1, 0, 0, •••
0, 1, 0, 0, •••
1, 1,  1, ••■
1, -1,  1,   -1,
1, -1, 0, 0, ••
1, 1, 0, 0, •••
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Thus

1
(7

1 -co'

1

1 + co'

(3.3) l
CO

p =   1   -  CO,

ix - 1 4- co.

Observe that if/ is an arbitrary sequence (not a generalized sequence), then the

sequence may be exhibited in terms of its members through

(3.4) /=E/0V.
,=0

This important relation is used in Sections 11 and 12.

Direct calculation shows that the sequence 1, — a, 0, 0, ■ • • is the inverse of

the sequence 1, a, a2, • ■ • . The sequence 1, —a, 0, 0, • • • may be written as 1 —

aco where a is a scalar. Since 1, a, a , • • • is the sequence a , we have

a (1 — aco) = 1,

or

ax =

By convolution,

Therefore,

By induction,

1 — aco

= E aV-'.
aw 1 — aco      (1 — aco)2      ,=o

n-^—-<i = (X + Dax
(1 — aco)2

1 „,. v.X
(3.5) ____ = C(\ + m,m)a\

where C(X, m) denotes the binomial coefficient

C(\,m) = 1-B (X-i).
ml »-o

Observe that if / is an arbitrary sequence, then

«'/(X) = /(X - j),       Xfci,

= 0,        X < j.
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In particular,

m

<3-7> (T^M- = c(x'rf"ra

and

(3.8) _^_ = c(X,m).

Since C(X, m) = 0 for X and m nonnegative integers and X < m, we need not write

these relations for two cases as in (3.6).

Observe that in (3.7), m is fixed and the sequence is indexed by X, the first

parameter of the binomial coefficient. Consider now the" sequence

1, a, 0, 0, • • • = 1 + aco.

By convolution,

(1 + aco)2 = 1 4- 2aco + a2co2 = C(2, X)a\

and by induction,

(3.9) (1 + aco)m = C(m, X)a\

Observe the similarity between (3.9) and the identity

m

(1 4- at)m = EC(m, X)aY.
x=o

We return to this in Section 12.

It is important not to confuse (3.7) and (3.8). For each m, the sequence

{C(X, m)\ = C(0, m), C(l, m), C(2, m), • • •

has an infinite number of nonzero elements. On the other hand, only the first m + 1

members of the sequence

\C(m, X)i = C(m, 0), C(m, 1), C(m, 2), • • •

are nonzero. For example,

(C(X,3)} ={X(X~^(X~2)} = 0,0,0,1,4,10, ••-,

{C(3,X)¡ = 1,3,3,1,0,0,0, •••.

Formulas relating {C(X, m)} and [C(m, X)} are derived in Section 9.

We turn to the case where a is complex. Let a = Re'*. Then

m

= C(X, m)ax
(1 - aco)"^1

becomes

m

(3-io) (i - ;u,)-«= c(x' m^m^-n)*-
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The left side of (3.10) may be written as

m+l

,„„,. m n       p-i, ,a+i      co"*E (-l)*C(m+ l,fc)ßV"V
(ó.ll) co (1 — /te     co) *=o

(1 - ße^co)*^1 (1 - ße-'>co)m+1 (1 - 2ßco cos *> 4- ßV)m+1       '

Taking real and imaginary parts of (3.10) and (3.11) leads to

m+l

,„ 19s co'" E ( —l)*C(ra 4- 1, fc)ß*co* cos fc<p
^'";      C(X, m)ßx-m cos (X - m)v = —^

(3.13) .-,/.. \r>\-m     •       /> \ fc=0

(1 - 2ßco cos cp 4- ß2co2)m+l

m+l
TO

CO E (-l)t_IC(m+ l,fc)ßVsinfcc5
C(X, m)ßx~m sin (X - m)<p

(1 - 2Äco cos <p + ß2co2)m+1

In particular,

So n\ I> \ 1   —  ßco COS </>(3.14) ß  cos X(p =
1 - 2fico cos <p + ß V '

/oic\ D*   •    \ ßco sin cs
(3.15) R  sin Xcp =

1 - 2ÄC0 cos <p + RW '

(3.16) ßxcos^X
1 + RW

From (3.14) and (3.15), we may conclude that

(3.18) ?Xsin,(X+l)_

sin ¡p 1 — 2ßco cos <p + ß2co2 '

and from (3.6),

R     sin <p\ co
(3.19)

sin (p 1 — 2ßco cos <p 4- ß2co2 '

Using (3.1) and (3.2), these formulas may be written in terms of a, r, etc.

Thus co = 1/t and (3.17) imply

(3.20) ßxsin£x =
2 ß2 4- r2'

We restrict ourselves to m a nonnegative integer in formulas such as

= C(X, m)ax-m.
(1 - ao>)m+l

This formula could be extended to noninteger m but we shall not do so here.

4. The Operators of the Discrete Calculus: E, A, M. The standard operators

of the discrete calculus have certain desirable algebraic properties. They lack certain

other properties such as the possession of inverses. (The so-called inverse operators
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are not true inverses.) On the other hand, the operators introduced in Section 3 are

members of a field. As we shall show in this section, there are simple relations be-

tween the two sets of operators. Hence to solve a problem in the discrete calculus,

we translate into a problem involving generalized sequences, solve, and then trans-

late back.
Three standard operators of the discrete calculus are defined by

EfM = /(X 4- 1),

(4.1) A/(X) =/(X + l) -/(X),

Mf(\) = |f/(X+1) +/(X)].

E, A, and M are called the translation, forward difference, and mean operator,

respectively. The operators A-1 and M~1' are introduced in Section 8. Observe that

Ef is not a convolution. The operator E has no meaning in itself, but only in its effect

on f. It is easy to verify that there exists no sequence k, independent of /, such that

k/(X) =/(X4-l) -/(X),

where nf is a convolution.

Multiply

Ef(\) = /(X 4- 1)

by co and recall that

co/(X) =/(X- 1),        Xfcl,

= 0, X = 0.

Hence

(4.2) uEf = / - /(0).

(To understand sequence relations such as (4.2), the reader should recall that the

scalar /(0) is the sequence /(0), 0, 0, • • • .) Since tw = 1, we conclude that

(4.3) Ef - t/ - r/(0),

or

(4.4) Ef = -f--f(0).
CO CO

Hence the generalized sequence t is related to the translation operator. Also,

A/=  (r- 1)/- r/(0),

or

(4.5) A/ = prf - r/(0),

where p is the sequence

1, -1,0,0, ••• = 1 -co.
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Hence the sequence p is related to the forward difference operator. Furthermore

(4.6) M/«£t/-I/(0).

Hence p/2 is related to the mean operator.

Equations (4.4) to (4.6) are of the form

(4.7) Lf - af - ßf(0),

where L is an operator of the discrete calculus and a and ß are generalized sequences.

Replace / by Lf in (4.7). Then

By induction,

(4.8)

In particular,

(4.9)

(4.10)

(4.11)

Llf = «[«/ - 0/(0)] - ßLf(0)

= a2f - aßf(0) - 01/(0).

Vf= «7-/3E«n"1_^/(o).

Enf = rnf - E r^fU),

A"/ = pV/ - t E  (pr)""WA7(0),
y-o

/   \n n-1   /      \n-l-j

^-(l)^-^§(f)      «»»•
These relations show that the operators of the discrete calculus and certain of

our generalized sequences differ only by terms involving "initial conditions." In

Section 6, we demonstrate that (4.10) is essentially Newton's interpolation for-

mula with remainder.

Although generalized sequences commute and many operators of the discrete

calculus commute, the two families of operators do not commute with each other.

Thus

(PE - EP)f = /(0).

5. The Summation Sequence a. We defined

a =  1,1,1,

Hence

Since

of E/0').
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From (3.5),

1

(1 - co)"
= C(X + m - 1, m - 1).

Since amf may be interpreted as an m-fold sum or as the convolution of the sequence

am with the sequence /, we conclude that

(5.1) E   • • • Ë E/0'o) = E C(X 4- m - 1 - *, m - 1 )/(*).
J'm-1=0 J'l-0   J0=0 t-0

This is the analogue of Cauchy's formula

(5.2) f  dim-i • • ■  [ ' dk f '/(¿o) di« =  [   {t,~U)^{ f{u) du.
Jo 'Jo Jo Jo    (m — 1)!

Numerous expressions for sums of binomial coefficients may be derived by using

algebraic identities in co. We give only a few examples here. See also Section 9.

Thus,

A / * \m /-i \m— 1(i - cor = (i - «y
1   - CO

and (3.9) lead to the identity in X,

E(-DyC(TO,j) = (-l)x(7(m- 1,X).
y-o

Also,

(1 4- co)*(l 4- co)"1 =(14- co)*+m

and (3.9) lead to

x

E C(k,j)C(m, X -j) - C(k 4- m, X).
y=o

This is the well-known Vandermonde convolution. From

k m k+m
CO CO CO

we obtain

(1 - co)^1 (1 - co)m+l        (1  - «)*+*« '

E C(j, k)C(\ - j, m) = C(\ + l,k + m + 1).
x

I
y-o

If TO  =  0,

X

(5.3) HC(j,k) =C(X+1,H 1).
y=o

Convolution with 1/(1 — co) leads to summation. Convolution with 1/(1 -f- co)

leads to summation of alternate sequences. Thus the identity

1 co 11 a 1 1 1

1 + co (1 - aco)2 (a 4- l)2 1 + co      (a + l)2 1 - aco      a 4- 1 (1 - aco)2
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leads, after some simplification, to

E (-DV-1 = r-i-ñi f-1 + (-«tt1 + x<a + Dl|.
y=o (a + l)2

6. Newton's Interpolation Formula. Newton's interpolation formula is the

discrete analogue of Taylor's formula. Taylor's formula with integral remainder

is given by

(u) du.
;=o     J\ Jo »!

The derivative form of the remainder may be obtained from the integral form by

the second law of the mean. On the other hand, Newton's interpolation formula

is invariably given with a derivative remainder. We shall obtain the analogue of

(6.1) for Newton's formula with a summation remainder replacing the integral

remainder. From this we obtain the derivative form of the remainder.

We showed in Section 4 that

A7 - P"rnf - tZ (pr)n-WA'/(0).
y-o

Solving for/, and using p = 1 — co, r = 1/co,

<6-2> '-Su^^' + ̂ P"*
This is Newton's formula with the remainder expressed as a convolution. Using

(3.6) and (3.8), we can write (6.2) as

(6.3) /(X) = P„(X) + ß„(X),

where

Pn(X)    »    EC(X,i)A'/(0),
y-o

ßn(X) - ¿C(X- 1 -j,n)An+,f(j).
y-o

Observe that the remainder differs from the integral form of the remainder of

Taylor's formula in exactly the fashion that (5.1) differs from (5.2). This must be

the case since Taylor's formula is an identity due to repeated integration by parts

whereas Newton's formula is an identity due to repeated summation by parts.

Observe that (6.3) is valid with no regularity assumptions.

If An+1f(j) is independent of j, then

Ä.(X) = A"+1/(0) ¿ C(X -1 -j,n),
y-o

and, using (5.3),

ß„(X) = A"+,/(0)C(X, n + 1).

Hence, for this case,

/(X) =  EC(X,i)A'/(0).
y-o
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We return to the general case. Note that ß„(X) = 0 for X = 0, 1, • • • , n. Let

,.     v      C(X - 1 - j, »)
a-(X'w)=     C(X,n + l)     '        X>n-

Then

ay(X,»)^0,       / = 0, 1, ••• ,X- 1;

(6.4) î-i
E «y(X, ») = 1.
y-o

We can write the remainder as

x-i

(6.5) ß„(X) = C(X, » + 1) E ay(X, n)An+1f(j).
y-o

Thus the remainder is the product of a polynomial in X of degree n -{- 1 with a

weighted average of (n + l)st differences.

This result has been obtained without a regularity hypothesis. It is an identity

in X valid for nonnegative integer X. We extend the result to arbitrary X and obtain

the usual derivative form of the remainder as follows.

Let / denote a function of a real variable and let /(n+1) exist. Then, for some £y ,

A"+1/(j)  =/(B+1)(£y).

Hence

ß„(X)   =  C(X, » + 1)Ë Oy(X, »)/(n+1'(îy).
y=o

The sum is a weighted average of (n + l)st derivatives. By the intermediate-

value property of derivatives, there exists a point 0 such that

(6.6) ß„(X) = C(X,» + l)/(n+1)(0).

(Note that continuity of the (» + l)st derivative is not required. Existence of the

derivative implies the intermediate-value property.)

Hence

(6.7) /(X) =  ¿ C(X,¿)A'/(0) + C(X, n 4- l)/("+1)(0).
y-o

This formula is valid for arbitrary X.

7. Solution of Difference Equations. The nth-order linear difference equation

with constant coefficients may be written as

(7.1) /(X + n) + a,/(X + n - 1) + • • • + oJ(X) = o(X),

or
n

E otn-jE'f = g,       «o=l.
y-o

The coefficients can be real or complex. If/(0), /(l), • • ■ , /(» — 1) are specified,

the solution is uniquely determined for all X. Equation (7.1) might better be called
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a recurrence relation; the term difference equation is used for historical reasons.

The polynomial E?=o a*-p is called the characteristic polynomial and the equa-

tion

(7.2) ¿ an-it¡ = 0
y-o

is called the characteristic or indicial equation. The roots of the equation

(7.3) ¿ a/ - 0
y-o

are the reciprocals of the roots of (7.2). The sequence g is sometimes called the

forcing sequence.

We begin by considering the first-order equation

(7.4) (E 4- «,)/ = g.

From (4.4),

Hence

Therefore,

Ef = -f --/(0).
CO CO

l±J5£f = 1/(0) + g.
CO CO

(7.5) / - —¡--h ^—t--g.
1   -+-  «ico       1   -j- aico

From (3.5) and (3.6),

(7.6) /(X) = /(0)(-ai)X + E (-«i)W-Jo(i).
y-o

This analysis exhibits a number of features which hold true in the »th-order

case. The particular solution is expressed as a convolution. As we shall see below,

the form of g may be such that we can evaluate this convolution without writing

it as a sum. It is not necessary to obtain the general solution of the homogeneous

equation plus a particular solution of the inhomogeneous equation and then to fit

initial conditions. This is all done in one step. The dependence of the solution on

the initial conditions is explicitly obtained.

We turn to the second-order equation

(E2 + aiE + «2)/ - g.

Using

E2f - -J - -2f(0) - 1/(1), Ef = l-f - 1/(0),
CO CO CO CO CO

we find that

(7?) j  _/(0)(l +  aico)   4-/(l)co   | co2«?

1   4"   <*lC0   4"  OÍ2C02 1   +   Ci\0)  +  Ö2C02
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Let the zeros of the characteristic polynomial co2 4- aico 4- a2 be pi and &■ with

Pi ^ p2. The partial fraction expansion (see Appendix A) of (7.7) leads to

/(X) = —Í— [G(\) + S(\)},
P2   —   Pl

(7.8)
G(\) = /(0)[p2x+1 - Plx+1 + <*(,*? - Plx)] +/(l)[p2x - Plx]

=  /(0)[p2pl     —   Plp2 ]   + /(1)[P2     —   Pl ],

s(x) = E«(/)(p2x-w-p1x"w).
y-o

Let the characteristic polynomial have a double root at pi. Using

1 = (X 4- 1)P1\
(1 - Pico)2

it is easy to show that

X-2
X-l[/(x) = piw{/(0)ift(i - x)] +/(i)x} + E (x - l -jV^VCj).

y-o

The same result may be obtained from (7.8) by calculating the limit as P2 —► pi.

Observe that px and p2 are, in general, complex. If the coefficients and the starting

values are real, the solution is real for all X. In the form of the solution given by

(7.8) it is not clear that / is real. We give an example below to show that all cal-

culations may be done over the reals.

We turn to the nth-order equation

n

E <*„_,■#'/ = g,        a0 = 1.
y-o

Using (4.9),

Ejf= rjf- %S*f(k),

n n i—1

E a*-;^/ =  E a„-yE T'~kf(k) + g.
y-o y-o k—o

Interchanging the order of summation and setting r = 1/co, we find

n n—1 n—1—k

E «yco3/ =   E uf(h)    E ajta' + co"ç7.
y-o jfc=o y-o

Let

(7.9) pr(co) = e «y.
y-o

Then the general solution may be written simply as

n-l

/-1nN, E   CO*.P„-l-,fc(co)/(fc)
(7.10) f = k^o_,     co g

J DCA
Pn(co) P„(co)
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Assume that the roots of the characteristic polynomial are distinct. Let

(7.11) Cr(co) =  E«r-ycoy-
y-o

A calculation shows that

CO Pn_l-jfc(co) A Ai

Pn(co) i-1  1   —   P.-CO '

1-* \Pi/ _   Cn-l-i \Pi)~PÍ "      (Y<*>

*G)
Furthermore,

n—1 n -r.
CO y^        Hi

Pn(co) ,-i 1   —  p¿Co'

2-n

B, = - Pi 1

O Cn'ipiY

Therefore,

w—1 n     ¿-i i      \     X X—1 71 X—1—A

(7.12)     /(x) = e /(*) E c-rr^ ' + s i(*) zju-v
*-o i-i       C„ (pt) t-o ¿=i C„ (p,)

or

n-l X-l n        X-1-*

(7.13) /(X)  = E ft* 7T77-, E  GrWpJ/tt)  4- E ffU) E S-77—v •
i-1 W \Pi) *-0 ¡fc-0 i-1 C„ (p,)

It follows from (7.11) that

(7.14) Ch-i(«) = coCr(co) 4- «H-!.

Assume that p,- is real. For p< fixed, all the C„_i_*(pi) may be obtained by synthetic

division with about n multiplications. Using the Cn-i~k(pi), C„(pi) may also be

obtained by synthetic division. (For material on synthetic division, the reader is

referred to Kunz [15, pp. 19-21].)

We turn to some examples. The first example shows how all calculations may

be done over the reals. Given

(P2 4- 2P 4- 4)/ = 0,

the solution is

_/(0)(l 4-2co) +/(l)co

J 1 + 2co + 4co2

Writing l+2co=14-co-f-co and using (3.14) and (3.15), or using (3.18) and

(3.19), we obtain

/(X) - 2x T/(0) feos | ttX 4- ̂ - sin | ttXJ + /(l) -^ sin | »xi.
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To illustrate the importance of distinguishing between constant sequences and

scalars, we consider

(P2 - 3P 4- 2)/ = 1,       /(0) = 0,       /(l) = 0.

The right side of this equation is the constant sequence consisting of ones. The

solution is

2 . 2
CO 1 CO

1 - 3co 4- 2co2 1 - co      (1 - 2co)(l - co)2'

Since

1

(1 — 2co)(l -co)2      1 - 2co       (1 - co)2'

/(X) = 2X - X - 1.

As our last example, we consider

(P2 - 1)/ = X!,       /(0) = 0,       /(5) = 1.

Then

and

Since

_/(0) 4-/(l)co co2

l-co2   +r^r*X!

/(X) - J/(l)[l - (-1)X] + JE H - (-1)X~W]J!.
y-o

/(5) = 1 = /(l) 4- 7,

/(X) = -3[1 - (-l)x] 4- JE [1 - (-DW"yJj-!.
y-o

8. Inverse Operators of the Discrete Calculus: A-1, M~l. We define A-1/ to be

the solution of the first-order equation

Ac, =/.

Clearly, A-/ is determined only up to an arbitrary constant. Despite the sym-

bolism in common usage, A"" does not commute with A. It plays only a secondary

role in the theory of generalized sequences just as indefinite integration plays only a

secondary role in Mikusiñski's theory.

From (7.5),

(8.1) A"1/ = CM 4- ¡-ÍL- / = aA~lf(0) 4- co,/,
1   —  CO 1   —  CO

where A~'/(0) is just an arbitrary constant. Hence

(8.2) A-'/(X) = (l)xA-y(0) + £/(/),
y-i



GENERALIZED   SEQUENCES   WITH   APPLICATIONS   TO   THE   DISCRETE   CALCULUS      193

where (l)x serves to remind us that this constant is added in for each X.

We define M~lf as the solution of

Hence

(8.3)

or,

M<p - /.

M"1/ = ^¡ß + ^ / - ^-/(0) 4- 2co,/,
1   -p CO 1  -f- CO

M"1/ = (-l)xM-'/(0) 4- 2¿ (-DX_1"'/0-).
y-o

Thus M_1 is related to the operator v. Observe that whereas M and M~l are not

inverses, v and p are inverses. For material on A-1 and M~\ the reader is referred

to Jordan [13, Chapter III].
As an example, we calculate

M~V =
14-co       1 4- co 1 — aco

= C'(-1)X4-     2^\
a + 1

9. Heaviside and Dirac Sequences. Let

y(\,j) - 1,       X^i,
(9.1)

7(X,/)=0,        X</.

Let

i(X,i) - 1,        X =/,
(9.2)

5(X, j) =0,       \* j.

The sequence -y(X, j) is the sequence analogue of a unit step function. We call it a

Heaviside sequence. The sequence 5(X, /) is the sequence analogue of an impulse

or delta function. We call it a Dirac sequence. We shall show that p operating on

t(X, /) yields 5(X, /) in analogy to the continuous case where the derivative of the

Heaviside function is the Dirac function. 5(X, /) is often called a Kronecker symbol.

Observe that

(9.3) 7(X,/) =  —

(9.4) B(\,j) = J

CO

OJ

In particular,

7(X,0)  =
1 - co

«(X,0) = 1.
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Since p = 1 — co, the identity

coJ
(9.5) (1 - co) —    -   = co"

1  — CO

implies

(9.6) P7(X,i) =a(x,i).

Therefore

(9.7) y(\j) - «ri(X,j).

Using (9.4) and (9.7), we observe that

/= È/0V
y-o

implies

«/- E/Oh(x,/).
y-o

Certain algebraic identities in co lead to interesting results. From

we conclude that

From

(1  -co)*+1-i^-  =  (l-co)V,

P + 7(X,i) ={(-l)xC(fc,X)}{5(X,/)}.

y *
CO y_t CO-  CO

Therefore

(1 - co)M - co (1 - co)*«'

<r"y(\j) = uthC(\k).

M\j) = rkpkC(\,k).

In a similar manner we can obtain relations between C(X, k) and C(k, X), with

k fixed. From

k k
" _ CO /,    _       x*

(1   -   CO)*"*"1 (1   -   CO)2*«   K '   '

we obtain

(9.8) C(\,k) = coV*+1(-l)x<7(ifc, X).

Hence C(X, fc) is obtained by a (2fc + l)-fold summation of ( — l)xC(fc, X).

As an example, let k = 1. Note that

(-1)XC(1,X) - 1, -1,0,0, ■■..

The sum of this sequence is 1, 0, 0, • ■ • . The sum of the new sequence is 1,1,
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1, ■ • • . Again taking the sum we obtain 1, 2, 3, • ■ • . Applying co to this and using

(3.6), we obtain 0, 1, 2, • • • which is just C(X, 1), which is the left side of (9.8)

f or k = 1.

From (9.8),

From the identity

we obtain

(-l)xC(fc, X) = T*pa+1C(X, k).

i k

(1 + co)    =(14- co)
co*(l + co)*+1'

C(k,\)  = rV*+1(-DXC(X, k).

Recall that p is related to the mean operator.

10. Difference Equations with Heaviside and Dirac Sequences. Difference

equations whose forcing term depends on Heaviside or Dirac sequences may now

be easily handled. For a discussion of such equations using "classical" operator

methods, the reader is referred to Tauber and Dean [21].

Consider the first-order difference equation

(E - ß)f = y(\,j).

Then

/ _   /(o) coy+1
+

' 1 - ßu   '   (1 - co)(l - ßu)'

and

/(X) =/(0)/3x 4-^-=^ -y(\,j).

The dot in the last term of this equation is used to show that this is not a convolu-

tion.

Consider the more general equation

(E -ß)f=g(\)-y(\,j).

Using (7.6),

/(X) = /(0)/3x 4- EVí7(X - 1 - k).
k=0

The next two examples illustrate the treatment of an equation whose forcing

term contains a Dirac sequence. Let

(P - ß)f = S(\,j).

Then

/=T^T +

y+i

1 - /3co       I - ßu'

/(X) =f(0)? + ?-1-i-y(\,j+ 1).
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The solution of

(E-ß)f= ff(X)-í(X,j)

is

/(X) = #(0) + ^-'ff(i)7(X,i 4- 1).

11. The Scope of Generalized Sequences. Let / and g be sequences and define

hhy f = gh. If g(0) j¿ 0, then A is a sequence whose members may be recursively

calculated by

/(X) = T,h(j)g(\-j).
y-o

Let g 9e 0. Then there is an element g(i) 9e 0. Therefore

00 00

9 =  E 00'V = co'E ffO')co'~\
y-i y-i

Let

« = i(0, fif(*'+ 1), i(* + 2), ••• .

Then g = co'e and

h = l=tr\
g     e

Since e(0) j¿ 0, //e is a sequence and

f- = E c(/)co',
e       y-o

where CO') is determined from

/(x) = Ecoxx-i).
y-o

Then

í= C(0)co_i + C(l)co-'+1 4-  ..-.

12. Relation to Other Operational Calculi. Operational calculi date back to

the time of Leibnitz, Lagrange, and Laplace. A historical survey may be found in

Davis [7]. Important contributions were made by Boole [3] and Heaviside. (For an

interesting assessment of Heaviside's work, the-reader is referred to Cooper [6].)

Contemporary texts on operational calculi include those of Kaplan [14] and

Churchill [5].
A number of sequence transforms have been studied. These include the Dirichlet

transform (Fort [11])

/(/) - E a(j)s-'\
y-o
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or (Zypkin [22])

fit) = E a(j)e
y-o

■*i.

the 2-transform (Kaplan [14, pp. 375-388], Lawden [16])

/(*) = Ê Mi)*-'";
y-o

and the generatrix transform (Riordan [20, Chapter 2])

fit) = E <*oy.
y-o

It is clear that these transforms are closely related. The solution of linear dif-

ference equations with constant coefficients has been frequently performed by

operational means. The reader is referred to Boole [3, Chapter XI], Jordan [13,

Chapter XI], Milne-Thomson [18, Chapter XIII], Mikusinski [17, pp. 158-165]
and Erdélyi (9, pp. 70-74].

The idea of multiplication defined by convolution is not new. The reader is

referred to an important paper by Bell [1]. The key to Mikusinski's work is the

introduction of an inverse to convolution. Moore [19] defines a convolution algebra

in order to find formal power series solutions to differential equations. Feldman

[10] and Elias [8] solve difference equations. Eliáá defines h = fg by

x

MX) = E/(X - j)g(j - 1),       X > 0,       A(0) = 0.
¿-i

Berg [2, p. 26] defines h = fg by

MX) = E/0')û(x - j) - E/0')f7(x - i - j).
y-o y-o

In a paper published in 1950, Frankel [12] discusses a "calculus of figúrate

numbers." Frankel does not seem aware of the fact that his calculus is based on

the sequences C(X, /) and ( —1)XC(/, X).
Thus a number of authors have written on convolution algebras with applica-

tions to specific problems. The systematic application of such an algebra to a wide

variety of problems in the discrete calculus is the contribution of this paper.

We now investigate the relation between generalized sequences and generating

functions. From (3.4), any sequence may be written as

OO

(12.1) /=E/0V-
y-o

To the sequence with elements /(/) we may assign the generating function

(12.2) f(t) = Ítf(j)t>.
y-o

Note that (12.1) is an identity which follows from the definition of the sequence

co. It is simply a way of exhibiting the sequence in terms of its members and is

always true. There can be no question of convergence. Equation (12.2) defines a
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mapping from a sequence to a function of a real variable. There is an obvious iso-

morphism between the two systems.

The conceptual difference between generating functions and gei eralized se-

quences may be illustrated by the following example. The generating function

of the sequence 1, a, a2, ••• is 1/(1 — at) because

E iaty
y-o

1

1 - at

On the other hand,

1

1 — aco
= 1, a, a

•2

by the definition of fraction in our convolution algebra and by the definition of co.

In the calculus of generalized sequences the formula for the coefficients of a

product polynomial in terms of the coefficients of its factors is built into the system.

In a sense, generalized sequences are to generating functions as the method of de-

tached coefficients (synthetic division) is to polynomial division. On the other

hand, the relations discovered during almost two hundred years of experience with

generating functions may be used in the theory of generalized sequences because

of the isomorphism.

Appendix A. On Partial Fraction Expansions. The expansion of rational func-

tions into partial fractions is too well known to require discussion here. The reader

may refer to Kaplan [14, pp. 158-160]. The object of this appendix is to point out

a simplification in the calculation of the coefficients.

Let P(x)/Qix) be a proper rational function, and let Q(x) have a zero a of

degree p. Let

(A.1) rf«> -<«-«)'gg.

Then

where

Q(x)        x — a      (x — a)2 (x — a)p

(y> /   \

(A.2) PP-y = ^p,        j - 0,1, ••-,? - 1,

and where X(z) is a partial fraction expansion determined by the other zeros of

Qix). From (A.l) and (A.2), it appears that the coefficients in the expansion of

P(x)/Q(x) require the differentiation of a quotient which depends on P(x) and

Qix). We shall demonstrate that if the coefficients in the expansion of 1 /Qix) are

Aj, then the Py are linear combinations of the Ay with coefficients depending on

Fix) only.

The proof is simple. Let
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where

Since

A    . = l!M rtx) - (* - ">'

*(*) = P(x)»(z),

*(*(s) = tcU,k)P^k)ix)Sk)ix),

and

(A.3) P^y = É Ar-> f/    ("|,        ¿ = 0,1, ••-,?- 1.    .*-o (j — k)\

Equation (A.3) is the required relation.

Partial fraction expansions occur in the solution of difference equations. In

this case, Qix) is determined only by the coefficients of the homogeneous equation,

and Pix) is determined only by the initial conditions and the forcing term. Because

of (A.3), the expansion due to the homogeneous equation may be determined and

the initial conditions and the forcing term may then be varied without requiring

the recalculation of the expansion coefficients from scratch.

Appendix B. Automation of Operator Calculus. The solution of a problem with

the aid of an operational calculus bears a resemblance to the process of solving a

problem on a computer. First there is a translation phase. For a problem where an

operational calculus is used this is typically a translation from an analytic to an

algebraic problem. For a computer problem, this is the translation of, say, a mathe-

matical formulation in the language of Fortran into machine language. Then the

problem is solved. Finally, an inverse translation is needed to make the results

available. For the operational calculus, this involves the application of inverse

transforms. For a computer problem this might mean binary-to-decimal conversion

or conversion to crt output.

One advantage of an operational calculus lies in the fact that results may be

obtained in a mechanical or "cookbook" fashion. This suggests that certain classes

of problems could conveniently be solved on computers with an operational calculus

providing a natural symbolism. Tables of transforms and inverse transforms would

perform the functions of "syntax tables" in compilers. To change from, say, a

calculus for difference equations to one for differential equations, it is only necessary

to change these tables.

The computer can also function as a repository of knowledge. For this purpose

an operational calculus plays a natural role since the contents of certain parts of

mathematics may be summarized in the algebraic structure of appropriate operators

and in the transform tables.

Some work on symbolic manipulation on digital computers has already been

done. A noteworthy example is Brown's [4] alpak program which performs sym-

bolic manipulation on rational functions of several variables. The symbolic solution
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of various types of linear systems seems a particularly suitable candidate for

automation.
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