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A Search for Projective Planes of a Special Type
with the Aid of a Digital Computer

By A. D. Keedwell

1. Introduction. It is well known that a finite projective plane, in which

every quadrangle, with two vertices at the coordinatizing points of lx , has collinear

diagonal points, has order equal to a power of two and that the additive loop of

such a plane is necessarily an abelian group. A quadrangle with collinear diagonal

points is often called the Fano configuration and we shall denote it by F2. The

author has investigated the consequences of postulating closure of a configuration

P3 which is a generalization of the Fano configuration and he has shown that, under

an additional restriction, a finite plane in which this configuration is satisfied "local-

affinely" necessarily has order equal to a power of three (see [3]). However, it appears

quite possible that the additive loop of such a plane need not be abelian nor even a

group. The author has constructed a set of permutations of order 27 which is not a

group and which satisfies a set of conditions which he has shown to be necessary if it

is to represent the additive loop of a projective plane in which the configuration F3 is

satisfied local-affinely and which is subjected to the additional restriction referred to

above (see [3]). However, it is not known whether these conditions are sufficient.

That is, it is not known whether projective planes having such additive loops

actually exist. The problem is easily shown to be equivalent to the question whether

a complete set of mutually orthogonal latin squares exists having a given latin square

hi as basis square.

In the present note, an attempt to construct such a plane by a method involving

partly a theoretical argument and partly a numerical search using a Ferranti

Mercury digital computer is outlined.

2. Theoretical Basis of tiie Investigation. The investigation was confined to

the case of planes of order 27 for which the additive loop is not a group (this being

the smallest order for which such a loop can exist as is shown in [3]) and the search

was confined to the subclass of such planes for which the representational latin

squares were all isomorphic, as this was the most interesting case geometrically.

Let 7, Sgi , Sg2 , ■ • ■ , S0n_1 be the permutations representing the rows of some

preassigned latin square Lx as permutations of its first row. From a result due to

R. C. Bose [1], it can easily be deduced that, in the case when these permutations

form an abelian group with every element of prime order, a complete set of mutually

orthogonal latin squares L\, L2, ■ • ■ , Ln_i can be constructed as follows :

L,, =
goMtjSeo ÇiMgjSg0 ■ ■ ■ gn-iMgjSgo
goMgjSBl 9iM0iSBl • • • Çn-iMafin

goMgjSgn_i giMtJSgn_i • ■ • gn~\MgjSgn_l

Received August 31, 1964. Revised October 20, 1964.
1 The additional restriction is the postulation of the local-affine satisfaction of the con-

figuration a,4(9; 11, 12).
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for j — 1, 2, • • • , n — 1. Here, grMgj = gr-g¡, where ( • ) denotes multiplication in

the field GF[n] which has the given group as additive group;grSgt — gr + Çk, where

( 4- ) denotes addition in the field ; and go, ¡7i are, respectively, identity elements for

addition and multiplication, so that Mgi = I = SB„ . Thus, the MBj form a cyclic

group of order n — 1 and each leaves the element ¡70 fixed. Iigx denotes the element

— 1 of the field GF[n], then the permutation MBx may be expressed in the form

MBx  =   igo)igoSBl goSg'^igoSsi goSB~2) ■■■ igoSBin_lUi 0o*S7(n_1)/2).

According to H. B. Mann [5], if Pi, P2, ■ ■ • , P„_i and Qi, Q2, ■ • • , Qn-i are,
respectively, the permutations representing the rows of two latin squares Ly , Lk , a

necessary and sufficient condition that these squares be orthogonal is that the

permutations Pi-1Qi, PflQ2, • ■ • , PZ-iQn-i form a latin square, i.e., that they be

an exactly simply transitive set of permutations. Moreover, the squares whose rows

are the permutations PiMg. , P2MBj , ■ ■ ■ , Pn_iAfBy and QiMBh, Q2MBk, •■■ ,

Q„-iMgh will then be orthogonal for any choice of the permutations MBj , MBk .

It follows that, given an arbitrary preassigned latin square Lx, such as that ob-

tained by the author (of order 27 and corresponding to a plane of the type described

in the introduction), it is always possible to obtain a complete set of mutually

orthogonal latin squares Li ,L2, ■ ■ ■ , L„_i having Lx as basis square, where

P/ =
goMBjSBOMT* giMgfi^Mg-f • ■ ■        gn-iMB¡SB,Mg¡
goMgfigiMjj giMgfiaiMg-j ■■-        gn-iMgjStlMj}-

goMgfign^Mjl ÇlM'g ßg^Mj} ■■■ ÉTn-lM, ,■&„_, M B]
-1

provided a group of permutations MB¡ , M0ï , ■ ■ • , MBn_1 can be found such that,

for every MBj , the set of permutations

Sg'o^ojSst,, SgiMgfigj^ , • • ■ , SB~„_lM„iSBn_t

is an exactly simply transitive set. The squares will then be in standardized form

(see [2]) and all isomorphic.

If, with respect to his square Lx of order 27, in which the SBr are all permutations

consisting entirely of cycles of length three but do not form a group, a square L2 is

obtained by means of the permutation MSz (defined in terms of the S0r as above),

the author has shown that, for a certain choice of ga, the squares Li, L2 are or-

thogonal. The question was then whether a group of permutations, of order 26 and

to include the permutations Mgi = I and M0x, could be constructed which would

have the properties required above. The question was of interest from another point

of view in that no complete set of mutually orthogonal latin squares based on a

square whose additive loop is other than an abelian group has yet been constructed.

The assumption was made that the group would be cyclic and a numerical search

was made to find one permutation of the group other than MBx . Such an element

would necessarily be of order 13 or 26.

In the following argument outlining the design of the search programme, ex-

tensive use is made of the fact that, if P and Q are any two permutations on n letters,

then P^QP is obtained from Q by applying the permutation P to each of the letters

in the brackets representing the cycles of Q. For example, if

Q= i    )i    )(3i«i9i)(    )
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and

then

V =
'qi   q2   gs ■ •

yri    r2   n • ' •.

P~1QP=i   )i   )(nnrt)(   )

or, as we shall often write,

P~lQP= i     )i     )iqvP    qrP    g,-P)(     ).

For a proof of this result see, for example, p. 71 of [4].

3. Outline of Metiiod Employed for the Numerical Search. The author's latin

square Li is as follows :

12   3
2 3   1
3 12

4 5   6
5 6   4
6 4   5

7 8   9
8 9   7
9 7   8

1' 2' 3'
2' 3' 1'
3'  1' 2'

4' 5' 6'
5' 6' 4'
6' 4' 5'

7' 8' 9'
8' 9' 7'
9' 7' 8'

1" 2" 3"
2" 3" 1"
3" 1" 2"

4" 5" 6"
5" 6" 4"
6" 4" 5"

7" 8" 9"
8" 9" 7"
9" 7" 8"

4 5' 6"
5 6' 4"
6 4'  5"

7 8' 9"
9   7' 8"
8 9' 7"

1 2' 3"
1" 2 3'
1' 2" 3

4' 5" 6
5' 6" 4
6' 4" 5

7' 8" 9
9' 7" 8
8' 9" 7

1' 2" 3
1   2' 3"
1" 2   3'

4" 5 6'
5" 6 4'
6" 4   5'

7" 8 9'
9" 7 8'
8" 9   7'

1" 2 3'
1' 2" 3
1   2' 3"

7 8" 9'
8 9" 7'
9 7" 8'

1 2" 3'
3   1" 2'
2 3" 1'

4   5" 6'
4" 5'  6
4' 5   6"

T 8 9"
8' 9 7"
9' 7   8"

1' 2 3"
3' 1 2"
2' 3   1"

4' 5 6"
4 5" 6'
4" 5' 6

7" 8' 9
8" 9' 7
9" 7' 8

1" 2' 3
3" 1' 2
2" 3' 1

4" 5' 6
4' 5   6"
4   5" 6'

1' 2' 3'
2' 3' V
3'  1' 2'

6' 4' 5'
4' 5' 6'
5' 6' 4'

8" 9" 7"
9" 7" 8"
7" 8" 9"

1" 2" 3"
2" 3" 1"
3" 1" 2"

6" 4" 5"
4" 5" 6"
5" 6" 4"

8 9   7
9 7   8
7   8   9

1 2   3
2 3   1
3 12

6   4   5
4 5   6
5 6   4

8' 9' 7'
9' 7' 8'
7' 8' 9'

4' 5" 6
5' 6" 4
6' 4" 5

8' 9" 7
7' 8" 9
9' 7" 8

3 1' 2"
3" 1 2'
3'  1" 2

4" 5 6'
5" 6 4'
6" 4   5'

8" 9 7'
7" 8 9'
9" 7   8'

3' 1"2
3   1' 2"
3" 1   2'

4 5' 6"
5 6' 4"
6 4' 5"

8 9' 7"
7   8' 9"
9 7' 8"

3" 1 2'
3' 1" 2
3   1' 2"

7' 8 9"
8' 9 7"
9'  7    8"

3' 1 2"
2' 3 1"
1' 2   3"

5" 6' 4
5' 6   4"
5   6" 4'

7" 8' 9
8" 9' 7
9" 7' 8

3" 1' 2
2" 3' 1
1" 2'  3

5 6" 4'
5" 6' 4
5' 6   4"

7 8" 9'
8 9" 7'
9 7" 8'

3 1" 2'
2 3" 1'
1   2" 3'

5' 6 4"
5 6" 4'
5" 6' 4

1" 2" 3
2" 3" 1
3" 1" 2"

5" 6" 4"
6" 4" 5"
4" 5" 6"

9' 7' 8'
7' 8' 9'
8' 9' 7'

1 2   3
2 3    1
3 1    2

5 6   4
6 4   5
4   5   6

9" 7" 8"
7" 8" 9"
8" 9" 7"

1' 2' 3'
2' 3' 1'
3' 1' 2'

5' 6' 4'
6' 4' 5'
4' 5' 6'

9   7   8
7 8   9
8 9   7

4" 5 6'
5" 6 4'
6" 4    5'

9" 7 8'
8" 9 7'
7" 8   9'

2 3' 1"
2" 3 1'
2'  3" 1

4 5' 6"
5 6' 4"
6 4' 5"

9 T 8"
8 9' 7"
7   8'  9"

2' 3" 1
2   3' 1"
2" 3   1'

4' 5" 6
5' 6" 4
6' 4" 5

9' 7" 8
8' 9" 7
7' 8" 9

2" 3   1'
2' 3" 1
2   3' 1"

7" 8' 9
8" 9' 7
9" 7' 8

2" 3'  1
1" 2' 3
3" 1' 2

6' 4 5"
6 4" 5'
6" 4' 5

7 8" 9'
8 9" 7'
9 7" 8'

2 3" 1'
1    2" 3'
3 1" 2'

6" 4' 5
6' 4   5"
6   4" 5'

7' 8   9"
8' 9   7"
9' 7   8"

2' 3 1"
1' 2 3"
3' 1   2"

6 4" 5'
6" 4' 5
6' 4   5"

When we takegr0 = 1, the corresponding permutation MBx is

(1)(2 3)(l' l")(2' 3")(2" 3')(4 7)(5 7')(6 7")(4' 8")

(5'8)(6'8')(4" 9')(5" 9")(6" 9),

and the latin squares Li, L2 are then found to be orthogonal.

A cyclic group of order 26 contains one permutation of order two, twelve permu-

tations of order 13, and twelve permutations of order 26. Since, in the present case,
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the order of the group is to be equal to its degree, it will be simply transitive. The

permutation MBx of order two is already known and, since (2 )MBx ¿¿ 2, there must

exist a permutation of order 13 or 26 such that 2" —♦ 2. Moreover, MJxMgrMBx = M„r

for each r 7a 2, since a cyclic group is abelian. Therefore, if MBr is of order 26, MBx

maps the single cycle of MBr into itself. If MBr is of order 13, MBx necessarily maps

each cycle into the other. For, if not, we should have

ibiMBx b2MBx ■ ■ ■ bisMgj^ ibi b2 ■■■ bn).

This implies bTMBx = br+k , k < 13, for each r (mod 13). Then, brM2Bx = 6r+2* . That

is, br = br+ik - Therefore 2k = 0 (mod 13), which is impossible.

Thus, if a cyclic group exists, we are sure of the existence of a permutation of one

of the types

(I) (2" 2 63 64 • • • bn 3' 3 bjit, bMBx • • ■ bnMBx)

or

(II) (2" 2 63 64 • • • 611)(3' 3 bjftm bMBx ■ ■ • bi3MBx).

Our main programme was designed to obtain all permutations of the form

MBr = (2" 2 63 64 • • • 613 p 3' 3 bzMBx bMBt ■ ■ • buMgt q),

with p, q unassigned, such that each of the permutations Sg~kMBrSBk, k = 0, 1,

• • • ,26, transformed the symbol 1 into a different symbol.2 If possible, the symbol

613 was then to be found such that a permutation of type I or II having the same

property was constructed. (In the machine, p was set equal to 3' or 2 and q equal

to 2" or 3' for this purpose. ) The number of permutations to be tested vyas very

large, and, in fact, it turned out to be more economic in machine time to obtain

firstly all permutations of the form

MB, = (2" 2 63 64 • • • 3' 3 b3MBx hMo. ■■■)

such that the set of permutations SB'lMBtSgk ,k = 0, 1, • • • ,26, was, at most, simply

transitive.

For the main programme, the symbolism in the machine was chosen so that the

yth. column of the latin square L\ was that in which the symbol 1 appeared in the yth.

row, and the symbol of the xth row and yth column was then stored in register

address (fc 4- x + 27y). Here k was a fixed integer introduced for conven-

ience of programming. With this choice of notation, it followed that, if

M„r = ( • ■ • 6¡_i bi • ■ ■) and if yt-i and yt represented, in machine symbolism, the

columns of Li which contained the entries bt-i and bt in the first row, then exactly

one of the set of permutations Sg~kMgrSgk , k = 0, 1, • • • , 26, would transform the

symbol 1 into the symbol held in register address (/c 4- yi-i + 27yt). For the permu-

tation SB„ represented by the yt-ith row of L\ was that which carried the symbol 6¡_i

into the symbol 1 (in virtue of our choice of notation) and which carried the symbol

bt into the symbol held in register address (fc 4- yt-i + 27yt). Thus, if the latter

symbol were denoted by d, we had Sg~*MBrSgm = ( • • • bt-iSBm btSgm • ■ ■)

- (••• 1 d •••)■

2 This is a first necessary condition for the set of permutations SJ¿MgrSgi[ , k = 0,1, • ■ •, 26

to be exactly simply transitive.
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As an example, since MBr = (2" 2 • ■ • ) and since the entry 1 occurs in the twelfth

row of the column of the latin square which has 2 as its first row entry, while the

entry 1 occurs in the twelfth row of the column which has 2 as its first row entry,

we have

^nMOrSBil = ( 2" )( 2 / V l' )-Ç" i- :")■
In this example, 6¡_i — 2 , yt-i = 12, bt = 2, yt = 3, so that the column whose first

row entry is 2 was the third one stored in the machine, and the column whose first

row entry is 2 was the twelfth one stored, storage of the entire latin square being in

consecutive registers, column by column.

Similar notation was used for the subsidiary programmes and obviated the

necessity to scan the columns of Lx in order to find the position of the symbol re-

quired.

4. Results. Thirty-six "successful" permutations were obtained from the

main programmes, these being eighteen cyclic permutations of order 26 and eighteen

permutations of order 13. Here, "successful," when referred to a cyclic permutation

Mgr , for example, means that each of the permutations Sg~kMgrSgk, k = 0,

1, • • • ,26, transforms the symbol 1 into a different symbol, and that the partially

defined permutation (2 2 63 64 • ■ • 3' 3 b3Mgx bMgx • ••) from which MBr was con-

structed does not violate any of the subset of the necessary conditions that the set

Sg'hlMgrSgic be an exactly simply transitive set of permutations which are determi-

nable from the partial permutation. However, on testing these thirty-six permu-

tations individually, it was found that none fulfills all the conditions for the set of

permutations Sg~kMgrSBk, k = 0, 1, •• -, 26, to be an exactly transitive set of per-

mutations.

Since our search was exhaustive for the case of permutations MÇr which belong

to a cyclic group keeping the symbol 1 fixed, we may deduce that no projective plane

of order 27 exists which has, at one and the same time, an additive loop of the type

represented by the latin square in paragraph 3 and a structure which permits the

remaining latin squares to be generated with the aid of a cyclic group of the kind

which we have described. The general question posed in paragraph 1 of this paper

unfortunately remains an open one.

For the interest of the reader, we append a typical six of each type of permuta-

tion MgT obtained from the main programmes.

(2" 2 7   9" 5' 4" 7" 1' 2' 6' 8" 6" 7' 3' 3 4   5" 8 9' 6    1" 3" 8' 4' 9    5)
(2" 2 8   7" 6" 5   8" 1' 2' 4" 9" 4 8' 3' 3 5' 6   9 7' 4' 1" 3" 9' 5" 7   6')
(2" 2 9   8" 4   6' 9" 1' 2' 5   7" 5' 9' 3' 3 6" 4' 7 8' 5" 1" 3" 7' 6   8   4")
(2" 2 4' 6" 7" 9' 5' 1' 2' 7' 4   9" 6' 3' 3 8" 9   6 4" 8    1" 3" 5   7    5" 8')
(2" 2 5' 4" 7   9" 6' 1' 2' 7" 5   9 4' 3' 3 8   9' 4 5" 8'  1" 3" 6   7'  6" 8")
(2" 2 6' 5" T 9   4' 1' 2' 7    6   9' 5' 3' 3 8' 9" 5 6" 8" 1" 3" 4   7" 4" 8)

(2" 2 7   9" 5' 9' 6   3" 8" 6" 5   S' 1") (3' 3 4   5" 8 4" 7" 2' 4' 9   7' 6'  1')
(2" 2 8   7" 6" 7' 4' 3" 9" 4 6' 9' 1") (3' 3 5' 6   9 5   8" 2' 5" 7    8' 4" 1')
(2" 2 9   8" 4 8' 5" 3" 7" 5' 4" 7' 1") (3' 3 6" 4' 7 6' 9" 2' 6   8   9' 5    1')
(2" 2 4' 6" 7" 4" 8   3" 4 9" 8'  5 1") (3' 3 8" 9   6 9' 5' 2' 7   5" 6' 7'  1')
(2" 2 5' 4" 7 5" 8' 3" 5 9 8" 6 1") (3' 3 8   9' 4 9" 6' 2' 7' 6" 4' 7" 1')
(2" 2 6' 5" 7' 6" 8" 3" 6 9' 8   4 1") (3' 3 8' 9" 5 9   4' 2' 7" 4" 5' 7    1')
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Approximate Integration Formulas for Ellipses

By Nancy Lee and A. H. Stroud

1. Introduction. Here we give some approximate integration formulas of the

form

(1)       /(/) - if   -n-l-., ,/(*,y/)„    ■    x, ■    ,x dxdy - £ ¿ifi*. V*),
JJeb Viix - c)2 + y2) Viix 4- c)2 4- y2) ,-i

/QO       a 00 N/    wix, y)fix, y) dxdy ~ J2 Ajixt , yi),
00 J— 00 t=l

Dix,y) exp {-aD2ix, y)]

W(x'y)       Viix - c)2 + y2) Viix + c)2 + y*) '

Dix, y) « Viix - c)2 + y2) + Viix + c)2 4- y2).

Here EB is the interior of the ellipse with foci at (±c, 0), semiminor axis P, and

semimajor axis Vic 4- B2). In wix, y), a is a positive constant. For both of these

integrals we give integration formulas exact for all polynomials of degree %k,

k = 3, 5, 7. These formulas are somewhat similar to formulas given by Hammer and

Stroud [1] for a circle and square and were found by similar methods.
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