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Hyman's Method Applied To the General
Eigenvalue Problem

By John Gary

This note is concerned with the problem of finding the roots of the determinantal

equation | A 4- XP | = 0. If B is nonsingular, then the problem is equivalent to find-

ing the roots of the equation | B~lA + X7 | = 0. The latter problem can be solved

by reduction of B~lA to Hessenberg form followed by application of Hyman's

method coupled with the Laguerre algorithm to locate the eigenvalues [1]. The pur-

pose of this note is to show that the reduction to Hessenberg form can be carried

out without first reducing the problem to the standard form | A 4- \I | = 0. It is

possible to define elementary row and column transformations with corresponding

matrices P and Q such that Â — PAQ is an upper Hessenberg matrix and B = PBQ

is an upper triangular matrix. Since \ P \ = \Q\ = ±1, the eigenvalue problem

| Â + XP> | = 0 is equivalent to the original problem. The eigenvalues of the trans-

formed equation may be computed efficiently using the method devised by Parlett

[1].
The referee for this paper called the author's attention to the fact that the gen-

eral problem | A 4- XP | = 0 can be reduced to the standard problem \ A + \I \ = 0

even if B is singular. This apparently involves a determination of the rank of B and

also a check of the linear independence of certain rows of a transformation of A.

The method described herein requires almost twice the computing time that

Hyman's method does when applied to the standard problem. Hyman's method is

probably not as fast as the Q-R algorithm. Therefore the method described herein

is probably inferior to one which reduces the problem to standard form. The reduc-

tion to standard form might introduce greater error than Hyman's method applied

directly to A + XP, but we have not made any comparisons.

We will now describe this reduction to Hessenberg form. Gaussian elimination

with interchanges applied to the rows of B can be used to reduce B to upper tri-

angular form. This enables us to define a matrix P(1) such that P(1) = P(1)P is upper

triangular (that is, b¡)} = 0 if j < i). Also we have | P(1) | = ±1 and | p# | ^ 1.

We use the notation A(1) = PWA and denote the order of A and B by N.

Next we interchange the iVth and iN — l)st rows of Ail) (if necessary) so that

I öjv-1,1 | ^ | air\i |. Then we add a multiple of the iN — l)st row to the iVth row

so that the element an\ is replaced by zero. This defines a matrix P(2). Note that

the matrix P(2) = pmBa) is no longer triangular. It may have a nonzero element

b(N,l,-i . By Gaussian elimination with interchanges on the last two columns of P<2)

we may replace o^ir-i by zero. This defines a matrix Qi3> such that | Q(3> | = ±1

and P<2)Q<3> is triangular. Note that these column operations have no effect on the

first column of A(2), thus a(N3,i = 0, where A<3) = Al2,Q(3). We may continue until we

have reduced the first column of A to Hessenberg form. The same method will re-

duce the remaining columns of A to Hessenberg form leaving B in triangular form.
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The diagrams below indicate the reduction procedure after P is in triangular form.

The lines indicate the rows and columns in which operations were performed.
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Thus we have reduced the equation | A 4- XP | = 0 to | Â + XP | = 0, where Â

is in Hessenberg form and P is triangular. The reduction will require l3N3/6 +

OiN2) multiplications and additions. This estimate ignores the work required to

perform the interchanges.

The method of Parlett uses the Laguerre root finder to compute the eigenvalues.

This requires evaluation of P(X), dP(X)/ciX and d2P(X)/cüX2, where P(X) =

| Â + XP |. These are obtained by Hyman's method.

We define three vectors

\Xi\,    {x/},    {xs"\,       O^ièN,

by the relations

X/f =  1,

N

—âi,i-iXi-i = ~YjXkâi,k 4- xYl,xkbi<k,

Xn 0,

N

xN   = 0,

k=i

N

k=i

A'

— á,,i_ixLi =  z3 xk'âi,k + 23 xkbi,k -f- \^2 xkbi,k,
k=%

N

■ai,i-iX{-i H xk"ái¡k -f 2^3 xk'bi,k 4- X^ »f.
Xk   0i:k

where <z¿,0 = — 1. Then we have P(X) = Cx0, P'(X) = Cxô', and P"(X)

where

c= (-îr-nA^
N-l

n¿-i

Cxo ,

This requires 6./V2 4- OiN) multiplications and additions. If P is diagonal, as it is

in Parlett's case, then 3A^2 4- OiN) operations are required.
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The degree of the polynomial P(X) is a parameter in the Laguerre algorithm.

If we overestimate the degree, the root finder will usually still converge, therefore

we may assume the degree is N. We computed the roots in one test case with N = 98

and the degree of P(X) equal to 47. With the degree set equal to 98 rather than 47

the Laguerre algorithm required about 13% more iterations for convergence.

We could have used plane rotations instead of similarity transformations to

compute Â and P. This might increase the stability of the reduction. In fact, the

method of Wilkinson would doubtless yield a proof of stability in this case [2]. By

stability we mean that the computed values of Â and B should be close tq those

obtained from a computation without roundoff error. In the test case mentioned

above we knew exact values for 23 of the 47 eigenvalues. The maximum error for

the 23 computed roots was two in the tenth digit. The machine carries approxi-

mately 11 digits.
In general, the matrices Â and P will be full Hessenberg and triangular matrices,

even if the original matrices A and P were banded (that is o<y = &<y = 0 if | i — j |

> 0- If the band width t is sufficiently small it may be better to use Gaussian

elimination on the original matrix A 4- XP rather than reduction to Hessenberg

form.

An exercise in Householder's book shows how the polynomial eigenvalue prob-

lem | \'I 4- X"_1Pi 4- • • • 4- XP.-i 4- P« I = 0 may be reduced to the standard

eigenvalue problem | A — X7 \ = 0 [3]. The same trick may be used to reduce the

eigenvalue problem | XSP0 4- X"-^ + • • ■ 4- P„ | = 0 to | A 4- XP | = 0. We define:

A =

0   0
7    0

/   0
0   I

-P.
-P.-i

P2

P2

B =

0

-7      0

0      -Po

If the order of P0, • • • , P» is N, then the order of A and P is sN.

This method has been tested successfully on a few matrix problems which arose

from differential eigenvalue problems [4]. In one case with N = 98 and the degree

of P(X) equal to 47, approximately five minutes were required to compute the 47

eigenvalues. The program was written in Fortran and run on a cdc 3600.
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