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1. Introduction. In 1943 R. Courant [1] suggested a variation of the Rayleigh-

Ritz method for eigenvalue problems. In the classical Rayleigh-Ritz method one

finds the stationary values of the Rayleigh quotient J(u) as u varies over a finite-

dimensional subspace of the space of admissible functions. The subspace usually

consists of analytic functions, for example, polynomials. Courant's idea, in essence,

is to use nonanalytic functions. For example, if the problem is

(1) y" + \y = Q,

(2) 2/(0) =1,(1) =0,

we divide the interval [0,1] into n equal intervals of length h = 1/n, the subintervals

being [xí , x,+i], where x0 = 0, x{ — Xi-i + h, for i = 1, 2, • • • , n. Now, let S be the

class of functions which are continuous on [0, 1], linear on each subinterval and

satisfy (2). Then if

f iu)2 dx
Ai = min Jiu) = min -^-,

S    f  iu2) dx
Jo

and if Xi is the lowest eigenvalue of (1) we have

Xt = A!.

In general, if X¿ are the eigenvalues of (1) arranged in increasing order and if A,

are the similarly arranged stationary values oí Jiu) as m varies over S, then

X¿ = A,-.

The A¿ are the eigenvalues of the finite-difference equation

h2
Ui+i - 2ui + Ui~! + A — (wi+1 + 4ui + Ui-i) =0,       i = 1,2, ■•■ ,n - I,

Uo = un = 0.

We shall show for two boundary-value problems that a lower bound for X< can

be determined once A¿ is known. This is done by finding positive numbers A and

B such that

(3) A<=^^,
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whence

BAi - A = X,.

This method of obtaining a lower bound has been used very effectively with a

different definition of A,- by H. F. Weinberger [4] and B. E. Hubbard [3].
In the last part of the paper we indicate how one might obtain higher-order

bounds.

2. The Sturm-Liouville Problem. The general Sturm-Liouville problem is

(4) ivy')' + (Xp - q)y = 0,

(5) ary'iO) - 6,j/(0) = 0,

(6) a2y'iL) + b2yiL) = 0,'

with v and p positive, q non-negative on [0, L], and v piecewise continuously dif-

ferentiate, p and q piecewise continuous on [0, L). Also, a, _ 0, 6¿ = 0. We may

assume without loss of generality that vix) = 1, L = 1. This problem has positive

eigenvalues Xi < X2 < • • • and corresponding eigenfunctions yi ,y2, • • • , normalized

so that Jo pyt dx = 1, which are continuously differentiable and have a continuous

second derivative at each point of continuity of p and q.

It is well known that

(7) /   pyiVjdx = in.
Jo

For any function / let

if) = fil) -7(0).

Let oi, • • • , a, be real numbers such that 2Z<=i ai  — I- Let yix) = ^¿-i a,-2/,-(a;).

Then it is known that

(8) /   iy')2 dx +      qyldx- (y'y) g Xs
./o Jo

(see [3, equation 2.12]).

Note that —(y y) is non-negative for any yix) which satisfies (5) and (6).

Choose mesh points 0 = x0 < xi < ■ ■ ■ < xn = 1 such that any discontinuity of

p or q coincides with some x¡, and let »Si be the space of functions which are con-

tinuous on [0, 1], linear in each \x¿, £»+i], and satisfy (5) and (6). For any con-

tinuous and piecewise continuously differentiable function wix) which satisfies

the boundary conditions, let

Niw) =  I   iw')2 dx — (ww).
Jo

The Rayleigh quotient is

Niw) +  i   qw2 dx
JoJiw)

pw dx
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Let 0 < Ai < A2 < • • • < A„_i be the stationary values of J(w) as w varies over

& . Then from the Courant maximum-minimum principle we have

(9) X,- = Ai,       i = 1, 2, ••• ,n - 1.

On the other hand, if Wi, • ■ • , w, are any linearly independent functions in

& , and if 2Z<-ia'2 = 1 and wix) = 2^'_i a,Wiix), then

(10) A. =    max  Jiw).

Weinberger calls this the Poincaré inequality, and it follows immediately from the

minimum-maximum character of the A,.

Now, let Yiix) be that function in Si which agrees with the eigenfunction ytix)

at each interior Xj, i.e.,

. YiiXj) = Viixj),      j = 1, 2, • • • , n - 1,       i = 1,2, ■•• ,n - 1,

and let

Yix) = ¿0,7,(3!).
¿-1

We shall show later that if the intervals are sufficiently small the Y i are linearly

independent. Then from (10) we have

(11) A. g    max  JiY).
OJ,--- o.

Let

rix) = yix) — Yix).

Then

(12) rix,-) =0,       j = 1, 2, ••• , n- 1,

and r satisfies (5) and (6). In addition, rix) is twice continuously differentiable in

each ixj, xi+i), and r ix) = y ix). Let G<(x, £) be the Green's function for the

differential operator d2/dx2 on the interval [x<, Xi+i], with boundary conditions (12)

or (5) or (6), whichever applies. Then

(13) rix) - f      Gjix, 0y"i0 #,       Xi á x Ú xj+,
Jxj

Let us first consider the denominator of JiY). We have

(14) Y2 ^ y2-2\y\\r\,

and

Therefore,

rxi+i pn\ fxi-n

/       pY dx ^ py dx - 2 /       p|y||r|<£r

r1      o t^ fx,+1

(15) /   pY2 dx ^ 1 - 2VpAf 21 \        Vp\y\\r\dx,
Jo J=0 ¿Xj
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where, for any fix),

fM = max fix),
[0,1]

fm = min fix).
[0,1]

By Schwartz' inequality,

a*i+i \2 rxi+\ [*i+i
Vv I y I ITI dx ]   g  /        py dx r dx.

But, from (13),

(16) r\x) g  P+1 G2ix, £) d£ P+1 (y")2 d£.

Put

G = max /       /       Gjix, £) dr. d£.
j       Jxj        Jxj

Then

f'i+i r rxi+i rxi+i "l1'2

(17) ¡x       Vp\y\\r\dx^VGU       py2dxjx       iy")2dxj,

and

1=1   .!,+! r    i -11/2

(18) £/       Vp|»l|r|dr g VÖ    /   (/)2dx     .
j-o ^i,- L^o J

From the differential equation,

y" = £ Oiiq - \ip)yi.
»=1

Then for any 7 > 0,

f iifdxtz (1 + 7)^ + (i+-)pa,A,2.
Jo Vm      \       y I

Let

*-#[<i+*>£+(i+;)'-i-T'
so that if qM = 0, Ke = A„VPm , otherwise 7 = AtVipnpm)/qu ■ In any event,

from (15), (18) we have

,1

(19) /   pY2 dx ^ 1 - 2VpmE,VG.
Jo

The important thing to note at this point is that Ke and G depend only on the

data. For example, if qix) = 0, a\ — a2 = 0, then

(20) /   pY2 dx ^ 1 — »   .. ' max \xj+l — Xj |2.
Jo ávlU     j
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The linear independence of the 7, is implied by (19), for max ixj+i — xf)

sufficiently small.

By entirely similar methods we find

(21) [ qY2 dx g  [ qy dx + ^p- K, VG + q„GK,2.
Jo Jo VPm

We now show that

Niy) = NiY) +Nir).

From the identity

- f "' y"y dx = - P+l iY" + r")iY 4- r) dx
Jxj  % Jxj

follows the identity

y'yVr + f+I iy')*dx = -y'Y\r + rY'fr1 - r'r|',+I
rxi+i rxi+i

+ iY')2dx+ ir'fdx.

Noting that y, y and Y are continuous and rixf) = 0 we obtain, by summing the

above,

Niy) = -iy'Y) + irY') + [  iY')2 dx + ¿V(r)
Jo

- -iy'Y) + (yY') - (YY') + f iY'fdx + AT(r)
Jo

= ¿V(F) + tfi».

But Nir) ^ 0, so from (11), (8), (21) and (19), we obtain

X. +^K,VG + qMK2G

(22) A« g       i-2Vp^,VG       »

which is the desired result.

It should be noted that there would have been no terms other than X, in the

numerator of (22) if we could have composed <Si of solutions of Y" = qY rather

than of Y" = 0.

3. A Fourth-Order Problem. Certain fourth-order problems can be handled by

the methods of Section 2. For example, consider the boundary-value problem

(23) ivy")" = \py,

(24) 2/(0) = 2/(D = y'iO) = y'H) - 0,

which describes the fundamental modes of vibration of a clamped beam. The

Rayleigh quotient is

f ivw")2
Jiw) = *^_

s2 dx

I   pw2 dx
Jo
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We define A,- to be the stationary values of «/(to) as w varies over a class of functions

which we call T3, which is composed of all functions which are continuously dif-

ferentiable on [0, 1], satisfy (24), and which in each interval (zJ+i, xf) satisfy

ivw ) =0. Any discontinuities of v and p must coincide with some x¡. The ele-

ments of Tz have the following form: wix) € T3 if and only if there exist real num-

bers Wj ,Wj ,j = 1,2, • ■ • , n — 1, and constants a¡, b¡, c¡, d¡ such that

wix) = a,/        ^j4 + bj       —A + c¿ix - Xj) + dj ,
Jxj Jxj vis) JXj Jxj vis)

for Xj ^ x ^ Xj+i, and wixj) = w¡, w\xj) = w¡. J is stationary at some wix) if

<25)       sr°-  wr°-  '-»■*•.••.— »•
As before we have X¿ g A,. To obtain an upper bound for A, we let y, be the

normalized eigenfunctions of (23) and (24) and let F¿ be the element in T3 such

that
Yiixj) = yiixj), Yi'ixj) = y/ixi),

j = 0,1, ■■■ ,n. Then for F = £U a{Yi, £U a2 = 1,

A. ^    max  JiY).

If we replace dix, £) in (13) by the Green's function for the operator

il ¿L
dx2 V dx2 '

with boundary conditions rix,) = r ixj) = 0,   j = 0, 1, • • • , n, then

,i

/   pF2 dx ^ 1 - 2pA, A, VG.
Jo

It is easily verified that

f viY")2dx á   I viy'fdxú X.,

so

X.
A, á

1 - 2pM A, VG

An interesting special case occurs when vix) is a step function. Then the ele-

ments of T3 are cubic polynomials in each [xj+i, x}], and

A. Ú

- (i*\ 4.05 X 10"3max [xi+1 - xtf

The matrix eigenvalue problem defining the X, can be found in [5], where it is

assumed that both v and p are step functions and that the beam is simply supported.

The matrices for the clamped beam are found by discarding the first and last

intervals.
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4. Higher-Order Bounds. To attempt to obtain higher-order bounds for the

Sturm-Liouville problem, rather than use higher-order Lagrange interpolation, as

is done in [2], we replace Si by the space Stk+i, k = 1,2, ■ ■ ■ , consisting of all

functions satisfying (5) and (6) which are k times continuously differentiable

on [0, 1] and which are polynomials of degree 2k + 1 in each [x,+i, x,\. If the eigen-

functions are sufficiently smooth, there will be functions F, 6 Sn+i such that

Yila)ix,) =yiwixj),       «-0,1, ••.,*.

With y = Y -f r we have

rix)(2k+2) = 2/(x)(2*+2)  •

with appropriate boundary conditions, so that there are Green's functions G¡ix, £)

such that

rix) =   r¥lGiix,k)yii)<iM)di
*Xi

We proceed as before; however, estimating¡\ [y(2k^]2 dx will be quite difficult for

k > 0 unless p(x) andg(x) are step functions, in which case we would have y,(tt+w ■

(g — \{p)k+1yi, from which estimates can be made.

For the numerator of the Rayleigh quotient we no longer have AT(F) £ Niy),

but

NiY) g Niy) +2 f\ Y"
Jo

dx

£ Niy) + 2 [ | y"r | dx + 2  [ | r"r \ dx,
Jo Jo

which can be estimated if r can.

For the fourth-order problem we could use spaces T2k+i consisting of functions

satisfying the boundary conditions such that, in each subinterval,

2Jb-3
,      11 * n v^        i
ivw )    = 2^ a.x ,

i-0

where the 2k — 2 constants oo, • • ■ , a%k-% and the four constants of integration are

determined by the condition that w{a) be continuous for a = 0, 1, k. We have not

obtained any bounds using Tu+i.
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