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ß may be obtained from Gershgorin's theorem. A method of obtaining lower bounds

for the least positive eigenvalue of a certain type matrix is discussed in [5].
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An Iterative Method for Computing the
Generalized Inverse of an

Arbitrary Matrix

By Adi Ben-Israel

Abstract. The iterative process, Xn+i = X„i2I — AX«), for computing A-1,

is generalized to obtain the generalized inverse.

An iterative method for inverting a matrix, due to Schulz [1], is based on the

convergence of the sequence of matrices, defined recursively by

(1) Xn+x = X„i2I - AX«) (n - 0, 1, • • ■ )

to the inverse A~l of A, whenever X0 approximates A"1. In this note the process

( 1 ) is generalized to yield a sequence of matrices converging to A +, the generalized

inverse of A [2\.
Let A denote an m X n complex matrix, A its conjugate transpose, Pru) the

perpendicular projection of Em on the range of A, Pru') the perpendicular projec-

tion of En on the range of A*, and A+ the generalized inverse of A.

Theorem. The sequence of matrices defined by

(2) XnU = X„i2PR(A) - AX«) •     (« = 0, 1, •••),
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where Xo is an n X m complex matrix satisfying

(3) Xo = A Bo   for some nonsingular m X m matrix B0,

(4) Xo = Co¿4     for some nonsingular n X n matrix C0,

(5) || AXo - PfiU)|| < 1,

(6) || XoA - Psu.>|| < 1,

converges to the generalized inverse A+ of A.1

Proof. As in [3], the generalized inverse A+ is characterized as  the   unique

solution of the matrix equations,

(7) AX = PR(A) ,

(8) XA = PBU.) .

Thus it suffices to prove that the sequence (2) satisfies:

(9) lim |¡ AX« - PR(A)\\   = 0,
n-*oo

(10) Urn || X„A - PffU.,|| = 0.

First we verify from (2), (3), (4) that

(11) X« = A*Bn
(« = 0, 1, •-•)

(12) X« = C„A*

(where B« , C« are recursively computed as

Bn+x = P„(2PSU) - AA*Bn),

C«+1 = CB(2PB(A.) - A*AC„),

but are not used in the sequel).

Now, from (2),

(13) PRU) - AXn+x = (P«u, - AXn)PRU) - AX«iPRU) - AX«);

using (12), it follows that AX«PRU) = PRlA)AX« .

Therefore

P«(A)    —   AXn+x   =    (Pk(A)    —   AX«)"

and

(14) || P«u> - AXn+l || S || PßU) - AX« ||2        (n = 0, 1, • • • ),

which, by (5), proves (9).

To prove (10) we write

PrW) — Xn+xA = Pru') ~~ X„i2PR(A) — AXn)A,

which is rewritten, by (11), as

P«u.) - Xn+xA = PBU.) - Pru-)X«A - XnA + iX«A)2 = (PfiU.) - X«A)2.

is a multiplicative matrix norm.
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Thus

(15) Il PBU.) - Xn+iA || ^ || Psu<) - X«A ||2       (n = 0, 1, • • • )

which, by (6), proves (10).

Remarks, (i) Similarly, the sequence defined by

(16) Xn+x = (2PBU.) - X«A)Xn in = 0, 1, • • •),

with X0 satisfying (3), (4), (5), (6), converges to A+.

(ii) When A is nonsingular, both (2) and (16) reduce to the well-known proc-

ess (1) due to Schulz [1], further studied by Duck in [4].

(iii) Conditions (5), (6) can not be weakened as shown by:

A = (Î   o) '      P*M - (j   l)
and, taking

Xo = (o   Oj '

which satisfies (3), (4) but || -4X0 — P*u) || = 1 under the sum-of-squares norm,

(iv) The practical significance of the process proposed here is impaired by the

need for knowledge of PR(A) ■ In fact, the direct computation of A+ requires little

more than the computation of PR(A-> and of Pru») , and not substantially more than

the computation of one alone. For any matrix A can be expressed in the form

A = FR* where the columns of F are linearly independent as are those of R. Then,

as shown by Householder in [5],

Pbu) = FiF*F)~1F*

and

Pr(a') = RiR R)  R ,

whereas

A+ = RiR*R)~1iF*FT1F*.

While only one of the projections PR<.A) , Pru*i is needed for the computation by

the method proposed here, both are needed for testing (5) and (6).

(v) In the case where A is of full rank, the method proposed here is applicable.

For, if rank A = m, Psu) = /»x« and (2) reads:

(17) X«+x - Xn(27 - AX«).

In this case, A+ = A*iAA*)~l and, indeed, by (11), we verify that X« = A*B« ,

where B„ converges to iAA )~ .

Similarly, if rank A = n, PRu"> = Inx* and (16) becomes

(18) X«+x = (2/ -X«A)X«.

Example. Let
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and take

1 1 / l     0N

Here, formula (17) is used to obtain:

-s(i i)f(; 9- «::-)(.•:!

X2 = ^

*» = ÖH?il   85       17°
ZÖO\-85    85 >

etc.,

converging to :
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A Note on the Maximum Value of Determinants
over the Complex Field

By C. H. Yang

The purpose of this note is to extend a theorem on determinants over the real

field to the corresponding theorem over the complex field.

Theorem. Let Din) be an nth order determinant with complex numbers as its

entries. Then

(1) Max |D(n)| = Max |D(n)|.
KfclS* \ajk\=K
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