β may be obtained from Gershgorin's theorem. A method of obtaining lower bounds for the least positive eigenvalue of a certain type matrix is discussed in [5].

Bettis Atomic Power Laboratory
Westinghouse Electric Corporation
West Mifflin, Pennsylvania

1. G. Birkhoff, R. S. Varga \& D. Young, Alternating Direction Implicit Methods, Advances in Computers, Vol. 3, Academic Press, New York, 1962.
2. C. de Boor \& J. R. Rice, "Chebyshev approximation by a $\Pi\left(x-r_{i}\right) /\left(x+s_{i}\right)$ and application to ADI iteration," J. Soc. Indust. Appl. Math., v. 11, 1963, pp. 159-169. MR 28 w 466.
3. J. Douglas, "Alternating direction methods for three space variables," Numer. Math., v. 4, 1962, pp. 41-63. MR 24 * B2122.
4. J. Douglas \& C. Pearcy, "On convergence of alternating direction procedures in the presence of singular operators,"'Numer. Math., v_ 5, 1963, pp. 175-184. MR 27 * 4384.
5. W. H. Guilinger \& R. B. Kellogg, "Eigenvalue lower bounds," submitted to the Bettis Technical Review.
6. D. W. Peaceman \& H. H. Rachford, Jr., "The numerical solution of parabolic and elliptic differential equations," J. Soc. Indust. Appl. Math., v. 3, 1955, pp. 28-41. MR 17, 196.
7. R. B. Smith \& J. Spanier, HOT-1: A Two Dimensional Steady-State Heat Conduction Program for the Philco-2000, WAPD-TM-465, Bettis Atomic Power Laboratory, Pittsburgh, Pa., 1964.
8. J. Spanier \& W. H. Guilinger, "Matrix conditioning for alternating direction methods," Bettis Technical Review, WAPD-BT-29, 1963, pp. 69-79.
9. R. S. Varga, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, N. J., 1962. MR 28 * 1725.
10. E. L. Wachspress, "Optimum alternating-direction-implicit iteration parameters for a model problem," J. Soc. Indust. Appl. Math., v. 10, 1962, pp. 339-350. MR 27 \#921.
11. E. L. Wachspress, "Extended application of alternating direction implicit iteration model problem theory," J. Soc. Indust. A ppl. Math., v. 11, 1963, pp. 994-1016.
12. E. L. Wachspress \& G. J. Habetler, "An alternating direction implicit iteration technique," J. Soc. Indust. Appl. Math., v. 8, 1960, pp. 403-424. MR 22 *5132.

An Iterative Method for Computing the Generalized Inverse of an Arbitrary Matrix

By Adi Ben-Israel

Abstract. The iterative process, $X_{n+1}=X_{n}\left(2 I-A X_{n}\right)$, for computing A^{-1}, is generalized to obtain the generalized inverse.

An iterative method for inverting a matrix, due to Schulz [1], is based on the convergence of the sequence of matrices, defined recursively by

$$
\begin{equation*}
X_{n+1}=X_{n}\left(2 I-A X_{n}\right) \quad(n=0,1, \cdots) \tag{1}
\end{equation*}
$$

to the inverse A^{-1} of A, whenever X_{0} approximates A^{-1}. In this note the process (1) is generalized to yield a sequence of matrices converging to A^{+}, the generalized inverse of A [2].

Let A denote an $m \times n$ complex matrix, A^{*} its conjugate transpose, $P_{R(A)}$ the perpendicular projection of E^{m} on the range of $A, P_{R\left(A^{*}\right)}$ the perpendicular projection of E^{n} on the range of A^{*}, and A^{+}the generalized inverse of A.

Theorem. The sequence of matrices defined by

$$
\begin{equation*}
X_{n+1}=X_{n}\left(2 P_{R(A)}-A X_{n}\right) \quad . \quad(n=0,1, \cdots) \tag{2}
\end{equation*}
$$

Received November 9, 1964.
where X_{0} is an $n \times m$ complex matrix satisfying

$$
\begin{align*}
& X_{0}=A^{*} B_{0} \quad \text { for some nonsingular } m \times m \text { matrix } B_{0}, \tag{3}\\
& X_{0}=C_{0} A^{*} \quad \text { for some nonsingular } n \times n \text { matrix } C_{0}, \tag{4}
\end{align*}
$$

$$
\begin{align*}
& \left\|A X_{0}-P_{R(A)}\right\|<1 \tag{5}\\
& \left\|X_{0} A-P_{R\left(A^{*}\right)}\right\|<1 \tag{6}
\end{align*}
$$

converges to the generalized inverse A^{+}of $A .{ }^{1}$
Proof. As in [3], the generalized inverse A^{+}is characterized as the unique solution of the matrix equations,

$$
\begin{align*}
& A X=P_{R(A)} \tag{7}\\
& X A=P_{R\left(A^{*}\right)} \tag{8}
\end{align*}
$$

Thus it suffices to prove that the sequence (2) satisfies:

$$
\begin{align*}
& \lim _{n \rightarrow \infty}\left\|A X_{n}-P_{R(A)}\right\|=0 \tag{9}\\
& \lim _{n \rightarrow \infty}\left\|X_{n} A-P_{R\left(A^{*}\right)}\right\|=0 \tag{10}
\end{align*}
$$

First we verify from (2), (3), (4) that

$$
\begin{align*}
& X_{n}=A^{*} B_{n} \tag{11}\\
& X_{n}=C_{n} A^{*} \tag{12}
\end{align*} \quad(n=0,1, \cdots)
$$

(where B_{n}, C_{n} are recursively computed as

$$
\begin{aligned}
B_{n+1} & =B_{n}\left(2 P_{R(A)}-A A^{*} B_{n}\right) \\
C_{n+1} & =C_{n}\left(2 P_{R(A *)}-A^{*} A C_{n}\right)
\end{aligned}
$$

but are not used in the sequel).
Now, from (2),

$$
\begin{equation*}
P_{R(A)}-A X_{n+1}=\left(P_{R(A)}-A X_{n}\right) P_{R(A)}-A X_{n}\left(P_{R(A)}-A X_{n}\right) ; \tag{13}
\end{equation*}
$$

using (12), it follows that $A X_{n} P_{R(A)}=P_{R(A)} A X_{n}$.
Therefore

$$
P_{R(A)}-A X_{n+1}=\left(P_{R(A)}-A X_{n}\right)^{2}
$$

and

$$
\begin{equation*}
\left\|P_{R(A)}-A X_{n+1}\right\| \leqq\left\|P_{R(A)}-A X_{n}\right\|^{2} \quad(n=0,1, \cdots) \tag{14}
\end{equation*}
$$

which, by (5), proves (9).
To prove (10) we write

$$
P_{R\left(A^{\bullet}\right)}-X_{n+1} A=P_{R\left(A^{\bullet}\right)}-X_{n}\left(2 P_{R(A)}-A X_{n}\right) A
$$

which is rewritten, by (11), as

$$
\frac{P_{R\left(\Lambda^{*}\right)}-X_{n+1} A=P_{R\left(A^{\bullet}\right)}-P_{R\left(A^{\bullet}\right)} X_{n} A-X_{n} A+\left(X_{n} A\right)^{2}=\left(P_{R\left(A^{\bullet}\right)}-X_{n} A\right)^{2} .}{{ }^{1}\| \| \text { is a multiplicative matrix norm. }}
$$

Thus

$$
\begin{equation*}
\left\|P_{R\left(A^{\bullet}\right)}-X_{n+1} A\right\| \leqq\left\|P_{R\left(A^{*}\right)}-X_{n} A\right\|^{2} \quad(n=0,1, \cdots) \tag{15}
\end{equation*}
$$

which, by (6), proves (10).
Remarks. (i) Similarly, the sequence defined by

$$
\begin{equation*}
X_{n+1}=\left(2 P_{R\left(A^{\bullet}\right)}-X_{n} A\right) X_{n} \quad(n=0,1, \cdots) \tag{16}
\end{equation*}
$$

with X_{0} satisfying (3), (4), (5), (6), converges to A^{+}.
(ii) When A is nonsingular, both (2) and (16) reduce to the well-known process (1) due to Schulz [1], further studied by Dück in [4].
(iii) Conditions (5), (6) can not be weakened as shown by:

$$
A=\left(\begin{array}{cc}
1 & 0 \\
1 & 0
\end{array}\right), \quad P_{R(A)}=\left(\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2}
\end{array}\right)
$$

and, taking

$$
X_{0}=\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right)
$$

which satisfies (3), (4) but $\left\|A X_{0}-P_{R(\Lambda)}\right\|=1$ under the sum-of-squares norm.
(iv) The practical significance of the process proposed here is impaired by the need for knowledge of $P_{R(A)}$. In fact, the direct computation of A^{+}requires little more than the computation of $P_{R(\Lambda)}$ and of $P_{R\left(\Lambda^{*}\right)}$, and not substantially more than the computation of one alone. For any matrix A can be expressed in the form $A=F R^{*}$ where the columns of F are linearly independent as are those of R. Then, as shown by Householder in [5],

$$
P_{R(\Lambda)}=F\left(F^{*} F\right)^{-1} F^{*}
$$

and

$$
P_{R\left(\Lambda^{*}\right)}=R\left(R^{*} R\right)^{-1} R^{*}
$$

whereas

$$
A^{+}=R\left(R^{*} R\right)^{-1}\left(F^{*} F\right)^{-1} F^{*}
$$

While only one of the projections $P_{R(A)}, P_{R\left(A^{*}\right)}$ is needed for the computation by the method proposed here, both are needed for testing (5) and (6).
(v) In the case where A is of full rank, the method proposed here is applicable. For, if rank $A=m, P_{R(A)}=I_{m \times m}$ and (2) reads:

$$
\begin{equation*}
X_{n+1}=X_{n}\left(2 I-A X_{n}\right) \tag{17}
\end{equation*}
$$

In this case, $A^{+}=A^{*}\left(A A^{*}\right)^{-1}$ and, indeed, by (11), we verify that $X_{n}=A^{*} B_{n}$, where B_{n} converges to $\left(A A^{*}\right)^{-1}$.

Similarly, if $\operatorname{rank} A=n, P_{R\left(A^{\bullet}\right)}=I_{n \times n}$ and (16) becomes

$$
\begin{equation*}
X_{n+1}=\left(2 I-X_{n} A\right) X_{n} \tag{18}
\end{equation*}
$$

Example. Let

$$
A=\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 1
\end{array}\right)
$$

and take

$$
X_{0}=\frac{1}{2} A^{*}=\frac{1}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & 1 \\
-1 & 1
\end{array}\right)
$$

Here, formula (17) is used to obtain:

$$
\begin{aligned}
X_{1} & =\frac{1}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & 1 \\
-1 & 1
\end{array}\right)\left\{2\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)-\frac{1}{2}\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & 1 \\
-1 & 1
\end{array}\right)\right\} \\
& =\frac{1}{4}\left(\begin{array}{cc}
2 & 1 \\
1 & 2 \\
-1 & 1
\end{array}\right), \\
X_{2} & =\frac{1}{16}\left(\begin{array}{cc}
10 & 5 \\
5 & 10 \\
-5 & 5
\end{array}\right), \\
X_{3} & =\frac{1}{256}\left(\begin{array}{cc}
170 & 85 \\
85 & 170 \\
-85 & 85
\end{array}\right), \quad \text { etc. }
\end{aligned}
$$

converging to:

$$
A^{+}=\frac{1}{3}\left(\begin{array}{cc}
2 & 1 \\
1 & 2 \\
-1 & 1
\end{array}\right)
$$

Technion, Israel Institute of Technology Haifa, Israel

1. G. Schulz, "Iterative Berechnung der reziproken Matrix," Z. Angew. Math. Mech. v. 13,1933 , pp. $57-59$.
2. R. PENROSE, "A generalized inverse for matrices," Proc. Cambridge Philos. Soc., v. 51, 1955, pp. 406-413. MR 16, 1082.
3. A. Ben-Israel \& A. Charnes, "Contributions to the theory of generalized inverses," J. Soc. Indust. Appl. Math., v. 11, 1963, pp. 667-699.
4. W. Dück, "Fehlerabschätzungen für das Iterationsverfahren von Schulz zur Bestimmung der Inversen einer Matrix," Z. Angew. Math. Mech., v. 40, 1960, pp. 192-194. MR $22 * 3102$.
5. A. S. Householder, Theory of Matrices in Numerical Analysis, Blaisdell, New York, 1964.

A Note on the Maximum Value of Determinants over the Complex Field

By C. H. Yang

The purpose of this note is to extend a theorem on determinants over the real field to the corresponding theorem over the complex field.

Theorem. Let $D(n)$ be an nth order determinant with complex numbers as its entries. Then

$$
\begin{equation*}
\operatorname{Max}_{\left|a_{j k}\right| \leqq K}|D(n)|=\operatorname{Max}_{\left|a_{j k}\right|=K}|D(n)| . \tag{1}
\end{equation*}
$$

Received June 5, 1964. Revised December 8, 1964.

