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method, the adjoint equations are homogeneous and the nonhomogeneity is post-

poned to the algorithm (9) for obtaining the corrections. As to which method is

faster or more efficient, it is not possible at this time to say. Some time later Brown

[3], in connection with a problem in the theory of hydrodynamic stability, inde-

pendently introduced a method using initial value problems, but convergence to the

solution was achieved partially by trial and error so that the method is not fully

automatic. This objection was overcome by Nachtsheim [4] who used a perturbation

scheme and iterated to the final solution; he was compelled, however, to estimate

more constants than are truly required. Although all of these investigators worked

on the same problem, none of them seems to have been aware of his predecessors.

The principles of the method presented (here may be applied to solve nonlinear

eigenvalue problems, since, in solving initial value problems, the computer is in-

different to linearity. Of course, the equations of differential corrections are linear

in any case, and so are their adjoints; but in this case the coefficients depend on the

previous iteration of the eigenfunctions. In nonlinear cases the solution cannot be

arbitrarily normalized because, in contrast to the linear case, the eigenvalues de-

pend on the amplitude of the eigenfunctions (e.g., in determining the period of a

cubic spring). In fact, for nonlinear cases, the eigenvalue problem would have to be

solved many times in order to grasp this dependence, and the relation between

the initial value of yr+i and the amplitude would have to be established from the

eigenfunctions. It might be pointed out that nonlinear eigenvalue problems cannot

be solved using methods involving a secular equation (except for periodic solutions

when one frequency dominates, in which case the method of equivalent lineariza-

tion can be used as an approximation), and, in this respect, the present method is

superior.
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A Special Technique For The Determination
of Eigenvalues

By V. O. S. Olunloyo

1. Introduction. We consider the problem of determining an eigenvalue of pre-

scribed order of the system

(1) y" + [»(*) + \]y = 0,        2/(0) = 2/(1) = 0, ' *>0.

We specifically wish to avoid the eigenvalues of lower order. We may begin with a

reasoned guess based partly on classical inequalities. The problem then boils down
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to the determination of the eigenvalue nearest a given number, a situation which

was studied by Kryloff and Bogoliuboff [1]. One deals essentially with intervals

containing the nearest eigenvalue as an interior point, the main task being to reduce

these intervals as much as possible. When the guessed value is nearer another

eigenvalue other than the specific one sought, there is, in general, a tendency to

drift towards the nearest eigenvalue. It is shown here how this drift may be checked.

In this paper, the theory of Kryloff and Bogoliuboff is examined. An error is pointed

out and the theory is reduced to a numerical method. An interesting computational

example involving Mathieu functions is constructed and treated.

2. On the Theory of Kryloff and Bogoliuboff. Details would be found in [1]. We

consider the minimization of '

(2) /»(f)   = f [f + («r + fc)f]ä dx/ f f2 dx.

f is expanded in a Fourier trigonometric series of the exact eigenfunctions y¡.

(3) f(x) = 2~lhiyi,        hi -   \   £ix)yi dx.
i-l Jo

On assuming the series is twice differentiable, one gets

(4) /*({■) = Í>,2(X¿ -k)2/2Zti,
1=1 !-l

where the eigenvalue nearest k is Xy, say. The co-ordinate functions employed,

m

(5) xfii = V2 Sin rix,       fm = Z) ¿.V-.,
¿-i

lead to

(6) [ [EtitJEMi) - pÇm in] dx = 0       (i - 1, 2, • • • , m),
.»o

where v is a Lagrange multiplier to be determined and

(7) v = dm = J(fm).

A string of inequalities based largely on Parseval's relation and the Cauchy-Schwarz

inequality lead eventually to

(8) 0 ^ dm - (Xy - k)2 < t,m,

where

(9)

fi+ifc + 'H   *
L        (m + 1)27T2J jm + 1)4tt4

im + l)8^

(10) A =  {|(Xy + o-)2 - <r" | - 2 I o-'Vil Xy | + ¡ <7 |)||

and

(11) X = k ± Vidm - 0Vm), 0 < 6 < 1.
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If d„, < rim we can conclude that Xy ̂  k + Vvm but, if dm > nm , we get two inter-

vals,

(12) (I)    k ± Vidm - *.),        (ID    k±Vdm.

In the first, no real eigenvalue exists and, in the other, there is at least one. The

neighbouring eigenvalues may then be isolated with m sufficiently large.

Asm-> oo, (I) and (II) approach and

(13) y/dm  —   Vidm   -   Vm)   <   VVm-

The vital intervals are, therefore,

(14) (fc — Vdm, k — Vidm — ij»))    and    ik + Vdm, k + Vidm — Vm)).

The determination of the sign of the correction in [1] may, in certain circumstances,

be replaced by the suggestions which follow.

3. Reduction of the Theory to a Numerical Method. We now examine how to

decrease an interval containing an eigenvalue. We note that nm is not explicitly

known, since A is unknown, and has to be estimated. An upper estimate, while

logically safe, is, of course, not necessarily 'best'. When a > 0 and a" < 0, as, for

example, in problems involving Mathieu functions, the case is clear. In any case,

(15) A  è  | (Xy + a)2 | + | a" | + 2| o-'Vi\ X, | + | » |) |.

Thus t]m increases with A. We consider now in detail the choice between the two

vital intervals. There is a criterion that settles where Xy is. In the derivation of this

criterion, however, an error occurs in [1]. Let the end parts of interval (I) be kx, k2

and the eigenvalue nearest t be X<, say. One may deduce

(16)

where

[1 +
(17) Vm   =   ±-

0 á di,m — (Xt, - ki)2 < ijm ,

0 ^ d2,m — (X*2 — ki)   < yjm,

1 k \ + | a [ + I Vdm H        A2
(m + 1)V J (m + 1)%4 ,

! *'
im + 1)V

k has been replaced by the upper bound k + Vdm . dx,m and d2,m are obtained from

kx, k2, respectively, by repeating previous routines. Separate consideration of the

cases k < \j, k > Xy is necessary.

Case A. If k < Xy, then k + Vdm è Xy è &i,

(18) 0   ̂    Xy   -   kx   g   Vdm  -   Vidm   -   T,m).

In [l] it is stated that

(19) Vdm   -   Vidm   -   *.)   <   -2~- .
2Vdm

This is false because it implies

(20) 1-V(1 -«)<!> M = g<l,
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i.e., 0^1- w/2 < V(l — u) and 1 — u + u2/i < 1 — u and u < 0 for real u.

Moreover, this error is carried forward in the derivation of two inequalities for

di,m and d2,m . In fact,

(21) Vdm   —   Vidm  —   Vm)   <   VVm,

therefore,

(22) 0 g (Xy- h) Ú VVm.

It is clear that, in the case k < Xy, \kl = Xy,

(23) dx.m   <   (X*,   —   kx)     +  Vm   Ú   Vm  +  Vm   =   «m •

Case B. If fc > Xy, one sees similarly that d2,m g em . If k ¿¿ Xy, either Case A

or Case B will hold. We thus have a criterion for deciding which vital interval to

choose. Clearly, if d1>m > em then Xy < k and if d2.m > em then Xy > k. Thus, starting

with a specific value of k, one may calculate dm , ijm and hence ki, k2. One can then

find di,m and d2,m and also tm . Upper bounds being needed for Vm and em , one has

now two vital intervals. The sign of di,m — tm or d2,m — em is determined. Whichever

is negative belongs to the relevant vital interval. The subsequent systematic reduc-

tion of that interval may be achieved as follows. Suppose the left-hand interval is

the vital one; one calculates a value of Vidm — Vm) to define k3, etc., until, however,

dm < Vm ■ This, therefore, establishes the feasibility of a practical use of the theory

in [1]. Drift towards an unwanted eigenvalue can now be checked. If one made an

upper estimate that was too high (or a lower one, too low) one would tend to drift

towards the next higher (or lower) eigenvalue. This drift can be detected when

di,m and d2,m are calculated. It can be rectified by reducing k somewhat arbitrarily

until the left-hand interval becomes relevant. Care must, of course, be exercised to

ensure that the reduction is not so drastic as to create a lower bound that is too

small.

4. A Numerical Example. We seek only the fifth eigenvalue of the system

y" + (X + 200 Sin2 irx)y = 0 = 2/(0) = 2/(1),
(24)

o-ix) = 200 Sin2 -kx,        o- = 200   and    <r* = 0.

By Sturm's comparison theorem [2],

(25) X6 + 200 ^ (5x)2 ^ X5,

(26) 46.74 é X5 á 246.74.

The weakness of this inequality shows the nontriviality of the chosen example.

One may quickly obtain an upper bound by the simplest variation method, viz.,

Rayleigh principle. We choose y = Sin 5irx and get X5 < 147. Thus

(27) 46 < X5 < 147.

Start with the convenient guess k = 100. The equations (6) are set up with

m

(28) fm = Z aPiV2 Sin prx),
j>=i

m

(29) EkiU) = E [k - ipic? + 200 Sin2 Tx]apV2 Sin pirx.
p=i
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The cases p = 1, 2, 3 and 4 need special care.

ici2 + lOOd + 5000 - p)ax + (-50a - 50c3 - 2500)a3 + 2500a6 = 0,

id2 + 2500 - p)a2 + (-50c2 - 50c4)a4 + 25000« = 0,

(-50c3 - 50a - 2500)ai + (c32 + 5000 - v)a3
(30)

+ (-50c3 - 50c6)a6 + 2500a7 = 0,

(-50c2 - 50c4)a2 + (c42 + 5000 - p)a4

,     + (-50C4 - 50c6)o6 + 2500O8 = 0.

For ra - 4 ^ i â 5,

2500a,_4 + (-50c¿_2 - 50c,)a¿_í + (5000 + c2 - p)at
(31)

+ (-50c, - 50ci+2)a<+2 + 2500O.+4 = 0,

with

(32) at = 0,    t > m,       c, = k + 100 - (îV)2.

The lowest latent root is then extracted and A and Vm are calculated. The calcula-

tion was based on a 20 X 20 matrix.

(33) Ai\) = (X + 200)2 + 400tt2 + 4007rV(X + 200),

where X denotes an upper bound to Xy.

¿(147) = 3472 + 400/ + 4WW347 = 146766.

With m = 20, k = 100 we have Vm = 13170. Also, dm was found to be 14073.75.
Here dm > vm, dm - Vm = 903.75, Vdm = 118.63, Vidm - Vm) = 30.062. Thus we
have the interesting result that X6 lies either in ( — 18,70) or (130,219). But as

46 < X6 < 147, we see that either X5 lies in

(34) (46,70)    or    (130,147),

which are much narrower intervals. To determine actually which is the relevant vita'

interval, we calculate di,2o and d2,20 by previous routine for kx and k2. A certain

amount of flexibility may be very useful here. One may choose to calculate d for two

other values of fc instead of 69.938 and 130.06. This involves an identical amount of

labour. We could consider mean points, viz., 58 and 138. In addition to providing

estimates in their own right, they should be combined with the previous results. By

taking arithmetic means systematically one may succeed in accelerating convergence.

The purpose of the illustration can thus be regarded as fulfilled. The exact solution

can be expressed as in [3] as a Mathieu function of an irrational order and X6 is

slightly over 55. Incidentally, X6 is 164 ± 1 and X4, which is negative, is about —34.

The exact values could have been interpolated between table values for rational

order Mathieu functions but the figures quoted are within a whole number of the

exact result. The idea of trying 58 and 138, in particular, and also of the value of a
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numerical method based on the theory of Kryloff and Bogoliuboff will now be

apparent. ......
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Integration Rules of Hypercubic Symmetry over
a Certain Spherically Symmetric Space

By J. N. Lyness

Abstract. A theory of integration rules suitable for integration over a hypercube

and having hypercubic symmetry has recently been published. In this paper it is

found that, with minor modification, this theory may be directly applied to obtain

integration rules of hypercubic symmetry suitable for integration over a completé

íi-dimensional space with the weight function exp(— Xx — x2 ■■• —x„). As in

the case of integration over hypercubes, an n-dimensional rule of degree 2¿ + 1

may be constructed requiring a number of function evaluations of order 2'n'/t\,

only.

1. Introduction. In this paper we are interested in generalising the theory and

results of investigations about the use of symmetric integration rules for a hyper-

cube, given in Lyness [2] and [3] which we refer to as Part I and Part II, respec-

tively. The particular generalisation that we consider here is the construction of

rules of the type

Í0O        «CO «CO
/    •■'•'/    exp[ — xx2 — x2 ■ • • — x«2]fixx, X2, • • • , xn) dxx dx2 ■ ■ • dxn

00   J— oO •'— 00

— S Ai f(*u , *2i , • • • , *,«■)•

Such integration rules have been considered before (Stroud and Secrest [4]). It is

conventional to term such a rule to be a rule of degree d if the approximate equality

may be replaced by an exact equality whenever / is a multinomial of degree less

than or equal to d.

Most of the results about symmetric rules for integration over hypercubes in

Parts I and II may be derived in almost identical form for this integral. To avoid

unnecessary repetition, we refer to Parts I and II for the details of the derivations

of such results; we indicate here only the differences or modifications in these re-

sults as they occur.
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