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In other words, D(n) is a function of n2 variables aJk which vary over the bounded

and closed domain D: {\ a,k\ ^ K\ ; hence this function is bounded and attains its

maximum value on the boundary of the domain D.

Proof. Let a,* = r)kei>ik and     A}k  =  Rjke**'k =  the co-factor of a¡k, where

K ^ rik ^ 0 and Rjk ï£ 0. Then, expanding by the jth row, we have

|D(»)|-

(2)

2_, ajkAjk 2ZrjkRjkeH^+*^
lc-1

â £ rjkRjk g £ KRjk = D'in),
k-l lt-1

where D\n) is the nth order determinant whose entries are

\ajk ,       if   rjk - K   and   Bjk + <t>jk = 0 (mod2ir),
(3) ttjk =

{Ke~t*ik,       if   rjk < K   or   0,* + (fc* ̂  0 (mod 2*-).

By applying the same process to the other rows, we obtain a determinant D*(n)

whose entries \a%\ = K and | D*(n)| ^ I -D(n)|. Hence, Max|0yi|áI | D(n)| á

Max|„it|_jt | Din)\; thus the proof of the theorem can be completed since the re-

verse inequality is trivial.
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1. Introduction. Most finite difference formulae in common usage for the nu-

merical solution of first-order differential equations are based on polynomial ap-

proximation. Two exceptions are the formulae based on exponential approxima-

tion proposed by Brock and Murray [1], and the formulae of Gautschi [2] which

are derived from trigonometric polynomials. The use of rational functions as ap-

proximants has been studied by many authors, including Remes [3], Maehly [4]

and Stoer [5], but the main concern of most of this work has been the direct ap-

proximation of a given function. Algorithms for interpolation based on rational

functions have been proposed by Wynn [6], and methods for numerical integration

and differentiation based on Padé approximation have been studied by Kopal [7].

It is the purpose of the present paper to derive a class of formulae, based on ra-

tional approximation, for the numerical solution of the initial value problem

(1) y  = fix, y),      yixo) = yo ■

The formulae proposed give exact results when the theoretical solution of (1) is a

rational function of a certain degree, just as many of the classical difference formulae
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give exact results when the theoretical solution is a polynomial of the appropriate

degree.

Formulae based on polynomial approximation frequently give poor results if the

integration of (1) is pursued too close to a singularity. It will be demonstrated

that the class of formulae proposed can give better results in such circumstances.

2. Derivation of the Formulae. The method of derivation will first be used to

obtain one of the well-known polynomial formulae.

Along the x-axis, consider the points xr to be given by

xr = Xo + rh (r = 0, 1, 2, • • •),

where h is the distance between consecutive points. The formula to be derived will

predict values of yT which will approximate to yixr), the theoretical solution of (1)

at xr. Let us assume that the solution of (1) is locally represented in the range

\x„ , xn+2] by the polynomial

4

(2) Fix) = 2Za*xs.
«-0

This polynomial must pass through the points ix« , y«), (xn+i, yn+i), ix«+2 , y«+2),

and, moreover, must assume at these points the slopes given by y = fix, y).

The following six equations must then be satisfied.

(3) Fix«+j) = y«+j,       F'ixn+j) = f«+j ij = 0, 1, 2),

where fr = fixr, yr). The éliminant of the five undetermined coefficients as from

the six equations (3) is the familiar Simpson's rule,

(4) i/„+2   -  Vn   =   g  (fn+2  +  ifn+1  + /„)•

The same approximant (2) can also be used to derive a two-point formula involv-

ing higher derivatives of /, which can be calculated using ( 1 ). Thus

y(s+n =/(.) s g= (/<-»)i+ (/<-»)„/    (s= 1,2,3, •••),

where /<0) = /. The éliminant of the a8 from the six equations

Fix«+j) = y«+j,        F'ixn+j) = f„+j,       F" ix«+j) = ftlj    ij = 0, 1)

is

2/71+I   —   Vn   =   ~   (/n+l   + /n)   —   Yñ v/n+1   — /»    )>

one of the class of formulae derived by Lambert and Mitchell [8].

This method of derivation, although tedious by comparison with that employed

in [8], has the virtue that it can be applied when the basic polynomial approximant

Fix) is replaced by a rational approximant

R(x) = P(x)/Q(x),

where Pix) is a polynomial of degree p, and Qix) a monic polynomial of degree q.
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3. Explicit Formulae. Let k + 1 be the number of points utilised in the formula,

and let I be the order of the highest derivative of y involved. Then an optimum

class of explicit formulae can be derived if

(5) k(l + 1) + 1 = p + q + 2.

The most useful class of formulae is obtained by putting k = q = 1, that is, a class

of two-point formulae based on a rational approximant whose denominator is a

linear function. It follows from (5) that derivatives of up to order p + 1 must be

employed. Applying the method described above to the approximant

(6) R(x) = f¿ a. A/ ibo + x),

the following éliminant is obtained.

m „    -„      &h',<r-»j_h'    (p + D(/n(p"")2
UJ Vwn Vn   ~   h   S\U + p! (p +   l)/„<»-»   -  Ä/n(P> •

Taylor expansion of (7) shows that the associated principal truncation error is

(P + 1)

r    ylp+2)   .     (y(p+1))2 1

! L     V + 2 ̂  (p + l)y<*>J •

Each formula of class (7) is seen to be a Taylor series with a rational correcting

term, and, being a two-point formula, cannot suffer strong instability.

The class of three-point formulae based on the approximant (6) will require, by

(5), that p = 21, that is, the numerator of the rational approximant must be of

even degree. The general formula of this class is very unwieldy, and only the first

two members are quoted.

cy-i

p = 2, q = 1:        3yn+2 - iyn+i + y« = -j (2/B+1 + /„)

(8) +Ü2 (Ul-fn)2

3 3iyn+1 - y„) - hif„+1 + 2f«)

Truncation error :        A4 ( - l- yU) + | (jQ-\ ;

p = 4, q = 1 :        yn+2 - y« = ~ (8/n+1 + /„) + ^ (2/^ - /n(1))

(9) _ 4Ä2 [2(/n+1 - /„) - hitflx + f»a))f
9    18iy„+1 - y«) - 2hiifn+1 + 5/„) + **(/<& - 2/„<») '

Truncation error:        h° (- 1 yw + 1 <?Ç£) .

Expansion of the rational terms in formulae (8) and (9) shows these terms to be

of orders ti¿ and h*, respectively. Thus formulae (8) and (9) have the interesting

property that they do not exhibit strong instability in the Dahlquist sense. The

corresponding formulae based on polynomial approximation, as derived in [8], are

both strongly unstable.
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For fixed values of A; and I, a formula based on an approximant with p = p*,

q = q* will give, for the problem ( 1 ), an algorithm identical with that which would

be obtained from a formula based on an approximant with p = q , q = p , applied

to the problem formed by applying the transformation y = \/y to (1). It follows

that the next approximant which should be considered will have p = q = 2. The

simplest formula based on this approximant is given by k — 1, I = 4, and is

?/n+l — Vn = hfn + /^

(10) 6fna)[j3f«w)2 - 2fnf«(2)] + fe/B[3/„(1)/n(3) - 4(/ntt))2]

12[3(/„(1))2 - 2/„/n(2)] + 6Ä[/„/»(3) - 2/n(1)/„(2)] + A2[4(/n(2))2 - 3/n(1)/„(3)] '

.,r       1     (■>   ,     1   8(2/(3))3 - 3ya)(»(4))"l
Truncation error:       A [-— y     + —    ^ _ ^   j .

It should be noticed in passing that formula (10) and the formulae of class (7)

are applicable as quadrature formulae for the evaluation of Jab fix) dx , particularly

when the range of integration is close to, or includes, a singularity oí fix).

If, during a calculation, the denominator of the rational term in any of the pro-

posed formulae becomes zero (or very nearly so) at a station at which it is known

that the theoretical solution of ( 1 ) does not have a singularity, then the mesh

length must be altered, or, if this remedy fails, a different formula must be used.

(In this context, it would appear that two-point formulae cause less trouble than do

those with three points.) A change of sign of the denominator would indicate that a

pole of the approximant Rix) had fallen within the local range of application of the

formula—a situation analogous to that of a polynomial approximant which becomes

oscillatory within the local range of application of the associated formula. Although

it can be argued that the local intervention of a pole is potentially more serious

than the onset of an oscillation, the formulae based on rational approximation have

the advantage that the occurrence of this difficulty during a calculation is easily

detected by keeping a separate check on the behaviour of the denominator. The

onset of polynomial oscillation in classical formulae is much more difficult to detect.

4. Implicit Formulae. Implicit formulae can be obtained if

(11) (k + l)(l + 1)  = p + q + 2.

Two-point formulae with q = 1 can therefore be obtained only if p is odd, and then

derivatives of y up to order (p + l)/2 must be employed. The first two formulae

in this class are

11 1,2       Jn Jn+1
p = 1, q = 1:        y„+x — y« = h

y«+\ — yn

(3) /„.(2)n

Truncation error:       A3 \ - y— + ^—+   ;L       6 iym J

p = 3, q = 1 :        y«+x — y«

Ai4(/n+1 - f«)2 + I2f«f«+i + 2hjf«f«1li - /„(1)/n+1) + A'/."/,'^

(13) \2iy«+x - y«) - 12A(/„+i + /„) - 2A2(/#i - /„«)

r     i i   ( M\2~
Truncation error:       A5 [ - ±-Q ,<« + ^ ^ .
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It is of interest to observe that (12) equates (t/n+i — y«)/h to the geometric mean

of /„ and f„+i, while the corresponding formula based on a polynomial approximant

equates the same expression to the arithmetic mean of /„ and f„+i.

In view of the strong stability of the three-point explicit formulae already de-

rived, there would appear to be little point in quoting comparable implicit formulae,

which, in any case, turn out to be excessively unwieldy.

5. Numerical Results. The example used to illustrate the formulae derived

above is the initial value problem

(14) y   = 1 + y2,       vid) = 1,

whose theoretical solution is y = tan (a; + ir/4).

A comparison is made on the basis of two-point formulae. Problem (14) is

solved, first using formula (10), and secondly using the formula of class (7) ob-

tained by setting p = 3. This gives

A3_4(/„(2))2

6 4j
15

y«+i — y«
,r ,      h      ,   (1)

= A/„ + -/„

Truncation error:
24 L     5y 4

A/n(3)

■W),l
,(«

Both of these formulae are explicit, involve two points, and utilise derivatives of y

up to order four. The corresponding formula based on a polynomial approximant

is the truncated Taylor series formula,

(16)

y«+i — y« = V. + \ /."
,   h_ j- (2)

^6 Jn + hf»
(3)

24-

Truncation error:
1

120
iA,(5>hy   .

Table I

Two-point Formulae

Theoretical
Solution

Formula (16)
Polynomial

Formula (15)
Rational p = 3,

q= 1

Formula (10)
Rational p = 2,

q = 2

Ü.
0.

0
0.05

.10

.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75

1.000
1.105
1.223
1.356
1.508
1.685
1.895
2.149
2.464
2.868
3.408
4.169
5.331
7.340

11.681
28.238

,000,000
,355,590
,048,880
,087,851
,497,647
,796,417
,765,123
,747,640
,962,757
,884,028
,223,442
,364,046
,855,223
,436,575
,373,800
,252,850

1.000
1.105
1.223
1.356
1.508
1.685
1.895
2.149
2.464
2.868
3.407
4.167
5.326
7.320

11.552
25.710

,000,000
,354,167
,045,160
,080,366
,483,855
,771,749
,720,992
,667,006
,809,445
,574,494
,542,560
,671,633
,819,985
,574,452
,695,821
,677,828

1.000
1.105
1.223
1.356
1.508
1.685
1.895
2.149
2.464
2.868
3.408
4.169
5.331
7.340

11.681
28.238

,000,000
,355,556
,048,805
,087,728
,497,464
,796,159
,764,765
,747,147
,962,070
,883,051
,222,003
,361,803
,851,409
,429,058
,353,989
,132,170

1.000
1.105
1.223
1.356
1.508
1.685
1.895
2.149
2.464
2.868
3.408
4.169
5.331
7.340

11.681
28.238

,000,000
,355,575
,048,846
,087,792
,497,556
,796,284
,764,932
747,367

,962,364
,883,451
,222,567
,362,642
,852,773
,431,623
,360,445
,169,733
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Formulae (10), (15) and (16) all have the same order of principal truncation

error. The numerical solutions of (14) by these three formulae are given in Table I,

together with the theoretical solution. A mesh length of A = .05 was used, allowing

the last station to be x = .75, whereas the singularity of the theoretical solution is

at x = .7854. The calculations were done on an IBM 1620 computer, working,

in floating point, to fourteen decimal places.

It is seen from Table I that the performance of the formulae based on rational

approximants is markedly better than that of the polynomial-based formula.

The same problem is solved again by the three-point formula (9), in order to

illustrate a remark made in Section 3. The corresponding optimum formula based

on a polynomial interpolant, using the same points and derivatives as (9}, is shown

in [8] to be strongly unstable. The nearest stable polynomial formula for comparison

purposes is the following, also taken from [8].

(17)

2/n+2   -  Vn   =   2A/„   + ^   i2f«1lx   + f«(l)),

Q

Truncation error:        — — aV6).
45

Table II shows the numerical solutions of (14) by these two formulae. This time

the polynomial formula is better than the rational, but neither is good. However, a

separate print-out of the denominator of the rational term in (9), quoted in the last

column of Table II, shows that the pole of the rational approximant intervenes

frequently, indicating that formula (9) is unsuitable for the problem in hand.

(Indeed, it can be seen that formula (9) gives a better result than (17) up to z = .20,

where the pole of the approximant intervenes for the first time.) The denominators

Table II

Three-point Formulae

0
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75

Theoretical
Solution

1.000,000
1.105,356
1.223,049
1.356,088
1.508,498
1.685,796
1.895,765
2.149,748
2.464,963
2.868,884
3.408,223
4.169,364
5.331,855
7.340,437

11.681,374
28.238,253

Formula (17)
Polynomial

1.000,000*
1.105,356*
1.223,039
1.356,073
1.508,462
1.685,738
1.895,652
2.149,548
2.464,571
2.868,107
3.406,506
4.165,158
5,319,554
7.293,760

11.404,247
23.995,397

Formula (9)
Rational p = 4,

q = 1

1.000,000*
1.105,356*
1.223,049
1.356,088
1.508,506
1.681,962
1.894,095
2.144,446
2.459,798
2.858,529
3.392,591
4.139,087
5.265,304
7.154,805

10.924,394
21.269,964

Denominator

-0.000
-0.000
-0.000

+0.000
-0.064

+0.047
-0.053

+0.023
-0.058
-0.026
-0.119
-0.277
-0.872
-3.540

,044,308
,061,787
,084,800
,010,870
,401,230
,904,767
,803,086
,417,882
,975,769
,305,965
,863,183
,808,720
,469,219
,801,901

Starting values are marked with an asterisk.



462 THEODORE   R.   GOODMAN

of the rational terms of the two-point formulae (10) and (15), on the other hand, are

of constant sign throughout the computation.
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The Numerical Solution of Eigenvalue Problems

By Theodore R. Goodman

1. Introduction. One method for solving eigenvalue problems on a digital

computer is to convert the governing differential equations to finite difference

equations, apply the boundary conditions at either end of the interval, and form a

secular equation for the unknown parameter (the eigenvalue) by setting the de-

terminant associated with the resulting set of homogeneous algebraic equations

for the ordinates of the solution equal to zero. Another way of solving eigenvalue

problems is to use the Galerkin method. This consists of assuming the solution to

be expanded in a complete set of functions satisfying the boundary conditions;

upon introducing the series into the differential equation and requiring the error

to be orthogonal to the functions in the set there results an infinite set of homoge-

neous equations for the coefficients. The secular equation is formed by setting the

associated determinant equal to zero. These formulations invariably require the

determination of the roots of a determinant of large order. The methods arise

naturally out of the very nature of an eigenvalue problem and are seen to utilize

the capability of digital computers to manipulate matrices of large order.

A completely different method for solving eigenvalue problems will be presented
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