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On the Number of Solutions of Certain
Trinomial Congruences

By Jacqueline Wells and Joseph Muskat

1. In the course of his extensive investigations into Fermat's Last Theorem,

H. S. Vandiver considered the number of solutions ix, y) of

I + axc = by"       (mod p),

where ce + 1 = p, a prime, and xy ¿á 0 (mod p).

If ab ^ 0 (mod p), the following is an equivalent formulation: Let ¡7 be a primi-

tive root of p. Then determine, for i and j fixed, 0 ^ t á c - 1, 0 á j í e - 1,

the number of pairs (r, s),0Sráe- l,0^síc- 1, for which the congruence

(1) 1 + gi+" - /*        (modp)

is solvable. The number of solutions (r, s) will be denoted by [i, j]ce, or simply by

[i, j], if c and e are fixed.

e  — 1,    e even,    i = 0,
e-l

(2) £[î',j]«=   e  - 1,   eodd,   i = c/2,       [2]
y=o

e, otherwise

It follows from (2) that [t',i]ce ^ e.

For a fixed e and p, let iV* denote the number of the ce-pairs ii, j) for which

[i,JU = k.
Given a fixed i for which

e-l

£ [i, JU = e,
3=0

then the integers [i, 0], [i, 1], [t, 2], • ■ • , [i, e — 2], [¿, e — 1] form a partition of e.

The partition e 0 0 ■ • • 0 0, where, for a fixed i, there is one j such that [i, j] = e,

and, for all other j, [i,j] = 0, enters into a criterion for Fermat's Last Theorem

[3, Theorem 2].

Erna H. Pearson computed the values of the [i, j] for several values of e and p.

A list of the cases she considered can be found in [2, p. 1284]. During 1954 and 1955,

Emma Lehmer, J. L. Selfridge, and C. A. Nicol, with the aid of the swac digital

computer, computed the values of [i, j] for e = 5, 7, p < 1024; e = 11, p < 800;

e = 13, p < 600; and e prime, 17 g e < 256, p < 512. For each p, the Nk , k = 0,
1, ■ • • , e, were determined, and the occurrences of each of the partitions of e were

tallied [1],
In [1], it was suggested that the values of the Nk and the occurrences of the

various partitions deviated significantly from what was "expected." To probe this

situation, we undertook to calculate the [i, j], the values of the Nk , and the oc-

currences of the various partitions for e = 5, 7, 9, 11, and 13, p < 18,000. We leave

to the end a brief description of the program.
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2. We assumed the following probability model: Given e objects, each is to be

put independently into one of e cells. (We neglect the fact that ours is a sampling

without replacement situation.) Then the probability that a given cell contains

exactly k objects is given by the binomial distribution as

o(^y
withIn the problem considered here, the objects are the e solutions of (1)

fixed. The cells are the values 0, 1, •   -, e — 1 which j may take.

Table 1 shows, for e = 5, the expected and the observed occurrences of the Nk ,

k = 0, 1, • • • , 5.
For each value of e in the study, the rjrimes p = 1 (mod e), arranged in as-

cending order, were subdivided into several groups. Within each group, the values

of Nk/ip — 1), for each k, 0 ^ k g e, were sorted from low to high and every

nth value, where n depended upon e, was recorded. For e = 5, the first six primes

were omitted and the remaining 505 in the study were divided into five groups of

101 each. In Table 2, every nth value of No/ip - 1), n = 1, 21, 41, 61, 81, 101,
is recorded for each of the five groups.

Tables 1 and 2, being typical of the tables generated in this study, suggest that

this probability model approximates the actual situation quite well. Table 2 and

similar tables indicate that, as p increases, the approximation improves. The full

set of tables can be found in [4].

3. In [1] the occurrences of the various partitions of e among the solutions of (1)

for fixed i were tabulated. According to the probability model outlined in Section 2,

Table 1

ATo

Nx
Nt
Ns
A%

Proportion
expected

.32768

.40960

.20480

.05120

.00640

.00032

Proportion
observed

Occurrences

.32761

.40979

.20472

.05115

.00642

.00030

1 419,388
1,775,443

886,952
221,602
27,818

1,317

Totals 1.00000 .99999 4,332,520

Table 2

Distribution of No/ip  ~  1), e  —  5, Within Groups

Group

1
2
3
4
5

Range of p

131-3061
3121-6451
6481-10111

10141-14221
14251-17981

1st

.31391

.31974

.32460

.32434

.32522

21st

.32432

.32588

.32597

.32652

.32688

41st

.32660

.32696

.32719

.32733

.32744

61st

.32791

.32800

.32805

.32783

.32796

81st

I

.32983

.32919

.32881

.32883

.32852

101st

.33906

.33534

.33463

.33055

.33126
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the number of ways of obtaining a particular partition can be calculated as the

product of the number Pi of permutations of the numbers in the partition times

the number P2 of permutations of the values of j in one of the Pi permutations of

the partition.

Px = el/fo! ill U\ • • • te\,

where t« is the number of occurrences of n in the partition.

Let Sj denote the number of j'a in a particular permutation. Then

P2 = e!/s0! Sil s2l ■ ■ ■ s„_i !.

Since the probability model has e* equally likely outcomes, the probability of a

given permutation is given by »

PiPt/e.

As an illustration, consider, for e = 5, the partition 3110 0. This means that,

for a fixed value of i, Pi expresses the number of arrangements of the j's so that

there is one j for which [i, j] = 3, there are two j's for which [i, j] = 1, and for the

other two j's, [i, j] = 0.

Pi = 5!/2!-2!-0!-l!0! = 30.

One of these thirty arrangements is [i, 2] — 3, [i, 1] = [i, 4] = 1, [i, 0] = [i, 3] =

0. For this case, P2 expresses the number of arrangements of the five solutions of ( 1 )

so that three of them correspond to j = 2, and one each to j = 1 and j = i.

P2 = 5!/0!l!-310!l! = 20.

Clearly, the value of P2 is the same for each of the thirty arrangements. Thus,

the probability that a given set of solutions forms the partition 3 1 1 0 0 is

30-20/56 = 600/3125 = 0.192.

(Note that the denominator of P2 can be obtained by affixing "factorial" sym-

bols to all the numbers in the representation of the partition and forming the prod-

uct.)
The observed and expected occurrences of the various partitions for e = 5 and

e = 7 are shown in Tables 3 and 4.

Table 3

Partitions, e =

Partition
Proportion
expected

Proportion
observed

Occurrences
First

occurrence

0 0 0 0
0 0 0
0 0 0

0 0
0 0
1 0
1 1

.0016

.0320

.0640

.1920

.2880

.3840

.0384

.001521

.032102

.063968

.191925

.287345

.384966

.038173

1,317
27,800
55,396

166,206
248,839
333,378
33,058

521
71
41
31
31
11
31

Totals 1.0000 1.000000 865,994
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Table 4

Partitions, e = 7

Partition
Proportion
expected

Proportion
observed

Occurrences
First

occurrence

7 0 0
6 10
5 2 0

1
3
2
1
3
2
2
1
2
2
1
1

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
10 0 0
0 0 0 0
0 0 0 0

0 0 0
1 0 0
0 0 0
1 0 0
1 1 0
1 1 1

.000008

.000357

.001071

.005355

.001785

.026775

.035699

.017850

.026775

.214196

.107098

.107098

.321295

.128518

.006120

.000007

.000363

.001013

.005349

.001769

.026445

.Q35593

.017881

.026338

.214878

.106963

.107913

.320731

.128484

.006275

3
150
419

2,213
732

10,941
14,726
7,398

10,897
88,902
44,254
44,647

132,697
53,158
2,569

9829
617
659
239
421
71

113
127
379
43
29

113
29
29

421

Totals 1.000000 1.000002 413,733

The probability that a partition is the partition e 0 0 • • • 0 0 is l/ee_1. The de-

viations mentioned at the end of Section 1 were apparently due to overlooking P2

in computing expected occurrences.

4. The solutions of (1) were obtained on the University of Pittsburgh's ibm 7070

computer. The program differed in several respects from the program for the swac

computer described in [1], as a much larger memory was available.

For e = 5, 7, 9, 11, and 13, cards containing primes p = 1 (mod e) and the least

primitive root g of p were available from a previous study. Mr. Dale Isner of the

staff of the University of Pittsburgh's Computation Center supplied a program

which generated a list of the partitions of p.

A modified index table was generated as follows:

For each p, g, g2, g3, ■ ■ ■ , gk, ■ ■ ■ , g{p~1)/2, reduced modulo p, were generated. If

n = gk (mod p), 0 < n < p, then k, reduced modulo e, was stored in cell IND +

minjn, p — n\.

The values of g,+rc, reduced modulo p, were then generated. For each i having e

values of g'+rc ^ —1 (modp), consider m = g%+rc (modp), 0 < m < p — 1. If

m < (p — l)/2, the number (value oí j) in cell IND + m + 1 was found and

stored in a list of solutions. If m è (p — l)/2, the number in cell IND + p

— m — 1 was stored in the solution list, as for e odd,

ind(m + 1) = ind(p — m — I)        (mode).

For each i, the solution list was analyzed to determine the appropriate partition,

and the relevant counters were tallied.

The results of the main program have been deposited in the UMT file. For each

e, e = 5, 7, 9, 11, and 13, the primes p = 1 (mod e), p < 18,000, are listed, with
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the values of Nk , 0 í¡ k á e, and the number of occurrences of the various parti-

tions of e into which the solutions are grouped.
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Tables of Values of Three Infinite Integrals

By Chih-Bing Ling and Hsien-Chueh Wu

Sometime ago, the senior author [1] evaluated the following two integrals to

five decimal places for integral values of m and p up to 15 and 8, respectively.

vm+1    f " xm dx
Iim, p) = /,   „ /     . , im > p> 1)

y        2"im\) Jo   sinhpa; — r —    /
(1) m+\        /.oo       m    j

2p(m!) Jo   coshp£ r

Two particular integrals Iim, m) and Iim, m — 1) were further evaluated by

Nelson and the senior author [2] to seven decimal places for m = 1(1)40. Nelson

also evaluated these two integrals for the same range of values of m to 12D and

18D, respectively, in two papers [3], [4].

In the present paper, the two preceding integrals will be evaluated to 8D for

m and p up to 25 and 12, respectively. The same method of evaluation will be used.

The various sums of inverse powers required in the computation were tabu-

lated to 32D by Glaisher [5], [6], and also appear in two well-known mathematical

tables [7], [8]. The results are shown in Tables 1 and 2. Table 3 shows the factor

2Pim\)/pm+1, also to 8D.

In addition, the following integral will also be evaluated to 8D for the same

range of values of m and p.

*«>     ■    m

(2) Sim,p) =       ^-^dx (wèpèl).
Jo      xp

The integers m and p are restricted as indicated, and iS(2m, 1) is to be excluded on

account of its divergence. This last integral occurs in certain branches of mathe-

matical physics, and on that account it was thought desirable to include a table of

its values.
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