
Some Theorems Concerning
Pseudo-Random Numbers

By D. L. Jagerman

Some quantitative theorems concerning the use of pseudo-random numbers

will be presented. Let xx , • • • , xP be a given sequence satisfying

(1) 0 Í i,- | 1,        líjíP,.

and/(x) a real, integrable function; then the first four theorems estimate the

quantity

(2) ^tifixj) - f fix)dx
r 3=i Jo

Further restrictions on the sequence x, will be imposed through a trigono-

metric sum. Let n ^ 0 be an integer, and let

(3) e(x) = ei2";

then effective estimates for the size of

(4) 2^ einxj)
3=1

will be required. Restrictions on the function fix) will be imposed by means

of its Fourier coefficients. Thus, let/(x) be given by

(5) fix) =  /  fiu) du +   ¿J  cneinx),
Jo m—-oo

in which the prime shows the absence of the term n = 0; then growth restrictions

on c„ will be required. The fifth theorem is concerned with multiply sequences;

it provides an estimate for the deviation of such a sequence from the ideal uniformly

distributed case. The symbols [x] and [x] will be used to denote the integral part

and the fractional part of x, respectively.

Theorem 1. C > 0, K > 0, a > 0, ß < 1, v > 1 + a 3

sei» ¿J einxj)
3-1

<K\n\"Ps

\tf(xj) -   f fix) ta   < 2KC{" - "} P*"'.
r j-x J0 v — a —  1

Proof. The Fourier series for/(x) is

(6) fix) =    £  cneinx)
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in which

(7) =   /   e(-nx)fix)
Jo

dx.

Thus, since the sequence Xj obeys the inequality 0 á *y Ú 1, one has

(8) pl/fe) —  /  fix) dx =    £' ft — 22 e(nxy
*    3=1 Jo n=—»        X    3=1

)•

Since I c„ I and | (1/P)£f=i e(nx3) | are even functions of n, (8) may be put in the

form

(9) \¡ £/(*,-) -  f /(*•) dx   g 2 £ I cn I   I £ e(nx,)
x    3—1 Jo n-l JT  3—1

The conditions of the theorem imply

P i-
(10)

Since

(11)

ífixj) - (fix) dx   ú 2KCP^1 ¿ —
3-1 Jo »=1 n*~

£ J-<1 + f*Lí-in—a Ji   x"-a

v — a

p — a — 1

the theorem follows.

Theorem 2. C > 0, K > 0, a > 0, 0 < 1, v = 1 + a 3

ft I â C I n r, £ e(nxy) U * I n \a Pß,       Pâ 3a/(w0
3-1

itf(xj) - ffix)dx <^p^r
p 3=1 J» «        L

< ^pfl-11 2ic(i - 0)lnP4

Proof. The proof is the same as for Theorem 1 up to (9). One has

i tf(xj) - (fix) dx   ^ 2KCP*-1       £       4~. + 2C      2-      -1 >

p 22 einxj)
P 3=1

< 1

(12)

in which the estimate

(13)

was used in the second sum. Since

(h)        £ -<r   £--
»>j>u-i)/« n"       J[p(i-i)/«] x"        (;

and

C15") rpO-«'«i > pli-i)/« _ j  _ p(i-i)/«Q _ p-d-ß)/«-,   >  jnll-fil«

one has

„_1)[p(l-/S)/aJ,-l '

(16) £    ±<
1     /3

„>j=(i-i)/« n"      i» — 1 \2

-a-ß)(y-l)/a
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and, hence,

(17)

Also, since

2c £ !<^m>-\
n>P(i-$)ia n'       a \2/

(18) £        JL < 1 +
íánápct-n)'« n'" I

p(l-0W«

^=l + L^lnP<2l^lnP,
X a o

substituting (17) and (18) into (12) establishes the theorem.

Theorem 3. C>0, K>0, a>0, ß<l,l<p<l + a3

p
cn | è C | n T, £ einxj)

3-1
'úK\n\"P>,       P è 3

a/(1-3)

P £><*> - i>> * | < w*~- [f^V« + ̂  (I)""'] -
Proof. The proof of this theorem is the same as that of Theorem 2 up to (16).

One has

(19)

p(l-0>/o

£       _L<  f.   dx  _        1 >(!-/>) (l-F+a)/a

and, hence, substituting (16) and (19) into (12) establishes the theorem.

Theorem 4. C >0, K > 0, a > 0, ß < 1, p > 1, p < a 3

I e. | g C | n H £ einxj)
3=1

á K | n |a P3,       P è 3al(i-ß)

\¡ÍLf(xj) - [ fix)dx
l    3=1 JO

< 2cp—■ [í^ (í)1^+^ (in •
Proof. The proof of this theorem is the same as that of Theorem 2 up to (16).

One has

(20)
lgngl»

£      j_      fp(I-ß)" ^x_     (p»-^/" + d

p7í-0>/«ír-»      Ji x'-° 1 — p + í

l-r+a

/ 4\     '    ™  p(l-ß)(X-v+a)/a

I - p + a\3

Substituting (16) and (20) into (12) establishes the theorem.

A multiply sequence is defined by the recurrence relation

(21) Xj+x = \\Xj +
m

j è 0,

in which X > 1, m > 0, m è 0 are integers, and x0 is arbitrarily chosen. Franklin [1]

showed that, for almost all x0, a multiply sequence is equidistributed. Let mx0

be an integer which is relatively prime to m, then mx¡ is the Bequence of integers
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customarily employed as pseudo-random numbers. Inductively, one easily estab-

lishes the following explicit representation :

(22) Xj = < X'xo +
X' - 1

m X 1

If mxo is an integer, then the sequence x, is clearly periodic in the sense that x,+m = x,

for all j; however, it is generally desirable that the sequence contain as many mem-

bers which are incongruent modulo m as possible. This is accomplished by choosing

for X a primitive root modulo m. A statistical function of interest is the distribution

function, cú(a). Let P denote the period of the sequence; then, if Tia) is the num-

ber of elements of the sequence which do not exceed a,

(23) «(a) =
Tia)

Since w(a) = 0 for a£0 and via) = 1 for a è 1, it is convenient to restrict a so

that 0 < a < 1. The following discontinuous function will aid in the determination

of w(a). Let

Haix) = 1,

(24)

0 g x < a,

Haix) =0,        a g x < 1,

and define H„(x) for all x by periodic extension; then

(25) Áa) = lZ Haixj).
r 3=i

The special case p. = 0 of (22) will be studied in which X is a primitive root modulo

m and P = <f>(m), where <j>im) is the totient. Thus

(26) (X'xo},

and mx0 is one of the numbers of a reduced residue system modulo m. In order to

investigate the distribution function of this sequence, several lemmas are needed.

Let

(27)

then:

Lemma 1.

¡ w(a) — a |

Proof. One has

(28)

pix) = 5 - {x};

p£p(xy)
Í     3—1

+

,        P

p £ pixj - a)
r 3=1

0 < a < 1.

Ha(x) = a + p(x) — p(x — a),

which may be established by consideration of the two cases 0  ^  x  < a and

a é x < 1. Thus, from (25),

1    F 1   P
(29) w(a) = a + -5 £ piXj) - n £ piXj - a).

Pi- PÍ-Í
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The lemma follows from (29).

Lemma 2.

1 f° 1 r1"
t > 0 => -- + t /     p(x + u) du g p(x) ^ -■ + t /     p(x + u)

¿t J-XIt ¿t J0

Proof. From the monotonicity of [x], one has

Í0 All
[x + u] du ^ [x] è t        [x + u] du.   ,

lit Jo

du.

Since

(31) [x] = x - § + p(x),

substitution of this into (30) yields the lemma.

Lemma 3. t > 0

i °° °° i
=> — - +   £   dneinx) á p(x) ^   £   cneinx) +5-,,

¿it n=—» n=—°o ¿t

Proof. Use of the Fourier series

(32)

yields

(33)

Áx) =   £'
einx)

„=-« ¿2irn

£ /     p(x + w) dw =   £' c„e(nx),
JO n—x

1 - e

4ir2n2

c„ | =

Thus

(34)

From the identity

(35)

one has

(36) c

Applying (36) to (33), one has

(37)

4ir2n2 «?'- 2;r2n2

Cs)-1-*©*"

(")-
2tt I n I

í

2-   n.
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Similarly,

(38)

p(x + u) du =   £' dneinx),
1/Í n--M

d» = t
47r2n2

Equations (33) and (38) show that

(39) d„ = -c.

and, hence, that      ' : ,

(40) I d„ | = | c„ |.

Inequalities (34) and (37) are also valid for d„ ; hence, the lemma is established.

Lemma 4.

t > 0,       y¡    real p £ piy¡)    ^ p £ mini — , -^ )   £ einyj
P 3=i P n-i        \xn   ir2n2/ \ ,--i

+
2i

Proof. In the inequalities of Lemma 3, x is replaced by y¡ and summation is

performed over j, Thus

i       i     "       ' ■£ i    p 1°° p 1  .,-•,• \
(41)    -- + -   £' d„ £ einyj) g - £ p(j/,-) ^ p  £' c„ £ e(n«/y) + - '

¿X L    n=—°° 3—1 L    3—1 x    n——»        3'—1 .¿i

and, hence

1        1

(42)

»      Pj->l £ e(nj/y)
3-1

1
p 22' p(í/í)" 3=1

^ p £ I c„
JT   n=—»

£ e(nyy)
3-1 + k"

From Lemma 3, one has | c„ | = | d„ | ; also, | c„ | and | £f_i einyj) | are even func-

tions of n, hence,

(43) Ppi

Use of the inequality

^¿ILpiyj)    â p£ | c„ £ eUî/y)
3 = 1

+4

(44) c„    :S min
in\27rn ' 2--»y '

n > 0,

yields the lemma.
It will be convenient to introduce the function 5n,<¡ defined by

Sn.d = 1,        d\n,

Sn.d = 0, d/f ÍI.
(45)

Lemma 5.

Xy is defined by (26), P = <¿>(m) £ e(nxy)
3-1

è   £ dSn,i
d\m
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Proof. Since X is a primitive root modulo m, \' runs through a reduced residue

system. Let

(46) X'wiXo = r       (mod m),

where r is the least nonnegative residue; then r runs through a reduced residue

system modulo m, and

(47) £ e(nXJxo) = £e(—]
3=i r    \m}

The sum £P einr/m) is a Ramanujan sum whose value can be expressed in terms

of the Möbius function, p.(n) [2]. Let cmin) denote the Ramanujan sum; then one

has

(48)

Thus

Cmin) =    £   dpi^j
d\(m,n) \d /

I Cmin) |á    £   d = £ d&n,d
d|(m,n) d|m

It is now possible to establish

Theorem 5. xy+i = {Xx,}, 0 < x0 < 1, m è 3, (mx0, m) = 1, X is a primitive

root modulo m, co(a) is the distribution function, P = tpim)

i    i   \ i   ^ 4 ,/3 In m
=>|û»(o) - a I < -A/ —p— .

Proof. Use of Lemmas 1 and 4 yields

(49)

and

(50)

p £ p(xj -a)    á p £ mini — , -— )   £ e(nxy)
P y=i P n=i \rn    ir2n2/ | y-i ^ 2f

*>(<*) - a | á p £ mini — , -—; J   £ e(nxy
P „=i \irn    7r2n2/ | y_i

-I-
Lemma 5 is now used to provide an estimate for the trigonometric sum appearing

in (50). Define the summation variable y by n = yd, then

o>(a) - a | á  p £ £ mini— , -¿-¿-.J + - .
P d}m y-i \iry    ir'y'd/       t

t ä *d,

(51)

When

(52)

one has

(53) £ mini — , -y-^) =      £      — +    £   -j-o

Since

(54) £     -
1STS</Td 7

,ll/"'1 rfx rtlxd dx
— á 1+ j
X x

1 + la r- < In f,
3TO
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one has

(55) £     !<---«.
i$y£t/wd iry        ir

Similarly,

(56)        £ i= £ i<r t-p-u
y>tlrd 7 y-it/*d)+i 7 •'[«/»«il X2        [t/ird]

Since

(57)

one has

t        _   t

^[t/ird] = ir2^ '

(58) ^   -¿5*¿
y>t/xd iry¿a      va

and, hence, (53), (55), and (58) yield

(59) £ min(l , -L-) < ÎL? +   ', í è -d.
T_i \iT7    TlyLd) ir 7r¿a

When

(60) £ < ird,

one has

(61) ¿min(i,     *)^ -L £±<  *
T-i        \it7   ir'y'a/      n'a 7-17¿      irza

Hence, using (59) and (61) in (51), one obtains

(62) |.(«)-«|<}    £    (Ü-Í + ±) + )l52Z   ^ +
í    l¿d¿t/T  \   IT n'a/ f l£d£m Tt'd

Thus

(63) I «(«) -a| < -L £ In £ + -^   £   \ + \.
ir'P irP iá¿S"> «       £

In obtaining (63), the estimate of (54) was used. Since

£  -j < 1 + In m < 2 In m,       m ^ 3,

one has

ira \                             \   (   \          ;    . 4£ In £ + 8£ In m      1(64) I w(a) - a\ < -^jjp- + - .

Let

0 < £ S m;
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then

(65) | w(a) — a \ < --=— t + -
rr r t

The choice

(66) t =

yields the inequality of the theorem.

When

(67) m = 2a,     • a > 2,

the period is given by

(68) P = J*(ro) = 2a-2,

and there is no primitive root; hence, Theorem 5 is not directly applicable. The

estimation of the trigonometric sum depended on Lemma 5 which requires r to

run over a reduced residue system. However, if one considers two distinct X's,

the powers of which together constitute a reduced residue system, then Lemma 5

is again operative and the estimate provided by Theorem 5 is valid. In fact, one need

only consider the sequence obtained on setting X = 5 in order to obtain one half of

the required reduced residue system; the other half is provided by the negatives of

the first half.
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