## Some Theorems Concerning Pseudo-Random Numbers

By D. L. Jagerman

Some quantitative theorems concerning the use of pseudo-random numbers will be presented. Let $x_{1}, \cdots, x_{P}$ be a given sequence satisfying

$$
\begin{equation*}
0 \leqq x_{j} \leqq 1, \quad 1 \leqq j \leqq P \tag{1}
\end{equation*}
$$

and $f(x)$ a real, integrable function; then the first four theorems estimate the quantity

$$
\begin{equation*}
\left|\frac{1}{P} \sum_{j=1}^{P} f\left(x_{j}\right)-\int_{0}^{1} f(x) d x\right| \tag{2}
\end{equation*}
$$

Further restrictions on the sequence $x_{j}$ will be imposed through a trigonometric sum. Let $n \neq 0$ be an integer, and let

$$
\begin{equation*}
e(x)=e^{i 2 \pi x} \tag{3}
\end{equation*}
$$

then effective estimates for the size of

$$
\begin{equation*}
\left|\sum_{j=1}^{P} e\left(n x_{j}\right)\right| \tag{4}
\end{equation*}
$$

will be required. Restrictions on the function $f(x)$ will be imposed by means of its Fourier coefficients. Thus, let $f(x)$ be given by

$$
\begin{equation*}
f(x)=\int_{0}^{1} f(u) d u+\sum_{n=-\infty}^{\infty} c_{n} e(n x) \tag{5}
\end{equation*}
$$

in which the prime shows the absence of the term $n=0$; then growth restrictions on $c_{n}$ will be required. The fifth theorem is concerned with multiply sequences; it provides an estimate for the deviation of such a sequence from the ideal uniformly distributed case. The symbols $[x]$ and $\{x\}$ will be used to denote the integral part and the fractional part of $x$, respectively.

Theorem 1. $C>0, K>0, \alpha>0, \beta<1, \nu>1+\alpha \ni$

$$
\begin{aligned}
&\left|c_{n}\right| \leqq C|n|^{-\nu}, \quad\left|\sum_{j=1}^{P} e\left(n x_{j}\right)\right|<K|n|^{\alpha} P^{\beta} \\
& \Rightarrow\left|\frac{1}{P} \sum_{j=1}^{P} f\left(x_{j}\right)-\int_{0}^{1} f(x) d x\right|<\frac{2 K C(\nu-\alpha)}{\nu-\alpha-1} P^{\beta-1}
\end{aligned}
$$

Proof. The Fourier series for $f(x)$ is

$$
\begin{equation*}
f(x)=\sum_{n=-\infty}^{\infty} c_{n} e(n x) \tag{6}
\end{equation*}
$$

Received December 28, 1964.
in which

$$
\begin{equation*}
c_{n}=\int_{0}^{1} e(-n x) f(x) d x \tag{7}
\end{equation*}
$$

Thus, since the sequence $x_{j}$ obeys the inequality $0 \leqq x_{j} \leqq 1$, one has

$$
\begin{equation*}
\frac{1}{P} \sum_{j=1}^{p} f\left(x_{j}\right)-\int_{0}^{1} f(x) d x=\sum_{n=-\infty}^{\infty} c_{n} \frac{1}{P} \sum_{j=1}^{P} e\left(n x_{j}\right) \tag{8}
\end{equation*}
$$

Since $\left|c_{n}\right|$ and $\left|(1 / P) \sum_{j=1}^{P} e\left(n x_{j}\right)\right|$ are even functions of $n$, (8) may be put in the form

$$
\begin{equation*}
\left|\frac{1}{P} \sum_{j=1}^{P} f\left(x_{j}\right)-\int_{0}^{1} f(x) d x\right| \leqq 2 \sum_{n=1}^{\infty}\left|c_{n}\right|\left|\frac{1}{P} \sum_{j=1}^{P} e\left(n x_{j}\right)\right| . \tag{9}
\end{equation*}
$$

The conditions of the theorem imply

$$
\begin{equation*}
\left|\frac{1}{P} \sum_{j=1}^{P} f\left(x_{j}\right)-\int_{0}^{1} f(x) d x\right| \leqq 2 K C P^{\beta-1} \sum_{n=1}^{\infty} \frac{1}{n^{\nu-\alpha}} \tag{10}
\end{equation*}
$$

Since

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n^{\nu-\alpha}}<1+\int_{1}^{\infty} \frac{d x}{x^{\nu-\alpha}}=\frac{\nu-\alpha}{\nu-\alpha-1} \tag{11}
\end{equation*}
$$

the theorem follows.
Theorem 2. $C>0, K>0, \alpha>0, \beta<1, \nu=1+\alpha \ni$

$$
\begin{aligned}
& \left|c_{n}\right| \leqq C|n|^{-\nu}, \quad\left|\sum_{j=1}^{P} e\left(n x_{j}\right)\right| \leqq K|n|^{\alpha} P^{\beta}, \quad P \geqq 3^{\alpha /(1-\beta)} \\
& \quad \Rightarrow\left|\frac{1}{P} \sum_{j=1}^{P} f\left(x_{j}\right)-\int_{0}^{1} f(x) d x\right|<\frac{2 C}{\alpha} P^{\beta-1}\left[2 K(1-\beta) \ln P+\left(\frac{3}{2}\right)^{\alpha}\right] .
\end{aligned}
$$

Proof. The proof is the same as for Theorem 1 up to (9). One has

$$
\begin{equation*}
\left|\frac{1}{P} \sum_{j=1}^{P} f\left(x_{j}\right)-\int_{0}^{1} f(x) d x\right| \leqq 2 K C P^{\beta-1} \sum_{1 \leqq n \leqq P(1-\beta) / \alpha} \frac{1}{n^{\nu-\alpha}}+2 C \sum_{n>P(1-\beta) / a} \frac{1}{n^{\nu}}, \tag{12}
\end{equation*}
$$

in which the estimate

$$
\begin{equation*}
\left|\frac{1}{P} \sum_{j=1}^{P} e\left(n x_{j}\right)\right| \leqq 1 \tag{13}
\end{equation*}
$$

was used in the second sum. Since

$$
\begin{equation*}
\sum_{n>P(1-\beta) / \alpha} \frac{1}{n^{\nu}}<\int_{\left[P^{(1-\beta) / \alpha]}\right.}^{\infty} \frac{d x}{x^{\nu}}=\frac{1}{(\nu-1)\left[P^{(1-\beta) / \alpha}\right]^{\nu-1}}, \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\left[P^{(1-\beta) / \alpha}\right]>P^{(1-\beta) / \alpha}-1=P^{(1-\beta) / \alpha}\left(1-P^{-(1-\beta) / \alpha}\right) \geqq \frac{2}{3} P^{(1-\beta) / \alpha} \tag{15}
\end{equation*}
$$

one has

$$
\begin{equation*}
\sum_{n>P^{(1-\beta) / \alpha}} \frac{1}{n^{\nu}}<\frac{1}{\nu-1}\left(\frac{3}{2}\right)^{\nu-1} P^{-(1-\beta)(\nu-1) / \alpha}, \tag{16}
\end{equation*}
$$

and, hence,

$$
\begin{equation*}
2 C \sum_{n>P^{(1-\beta) / \alpha}} \frac{1}{n^{\nu}}<\frac{2 C}{\alpha}\left(\frac{3}{2}\right)^{\alpha} P^{\beta-1} \tag{17}
\end{equation*}
$$

Also, since
(18) $\sum_{1 \leq n \leq P(1-\beta) / \alpha} \frac{1}{n^{\nu-\alpha}}<1+\int_{1}^{P(1-\beta) / \alpha} \frac{d x}{x}=1+\frac{1-\beta}{\alpha} \ln P<2 \frac{1-\beta}{\alpha} \ln P$,
substituting (17) and (18) into (12) establishes the theorem.
Theorem 3. $C>0, K>0, \alpha>0, \beta<1,1<\nu<1+\alpha \ni$

$$
\begin{gathered}
\left|c_{n}\right| \leqq C|n|^{-\nu}, \quad\left|\sum_{j=1}^{P} e\left(n x_{j}\right)\right| \leqq K|n|^{\alpha} P^{\beta}, \quad P \geqq 3^{\alpha /(1-\beta)} \\
\Rightarrow\left|\frac{1}{P} \sum_{j=1}^{P} f\left(x_{j}\right)-\int_{0}^{1} f(x) d x\right|<2 C P^{-(1-\beta)(\nu-1) / \alpha}\left[\frac{K}{1-\nu+\alpha}+\frac{1}{\nu-1}\left(\frac{3}{2}\right)^{\nu-1}\right] .
\end{gathered}
$$

Proof. The proof of this theorem is the same as that of Theorem 2 up to (16). One has

$$
\begin{equation*}
\sum_{1 \leqq n \leqq P^{(1-\beta) / \alpha}} \frac{1}{n^{\nu-\alpha}}<\int_{0}^{P^{(1-\beta) / \alpha}} \frac{d x}{x^{\nu-\alpha}}=\frac{1}{1-\nu+\alpha} P^{(1-\beta)(1-\nu+\alpha) / \alpha} \tag{19}
\end{equation*}
$$

and, hence, substituting (16) and (19) into (12) establishes the theorem.
Theorem 4. $C>0, K>0, \alpha>0, \beta<1, \nu>1, \nu<\alpha \ni$

$$
\begin{aligned}
\left|c_{n}\right| \leqq C|n|^{-\nu}, \quad & \left|\sum_{j=1}^{P} e\left(n x_{j}\right)\right| \leqq K|n|^{\alpha} P^{\beta}, \quad P \geqq 3^{\alpha /(1-\beta)} \\
& \Rightarrow\left|\frac{1}{P} \sum_{j=1}^{P} f\left(x_{j}\right)-\int_{0}^{1} f(x) d x\right| \\
& <2 C P^{-(1-\beta)(\nu-1) / \alpha}\left[\frac{K}{1-\nu+\alpha}\left(\frac{4}{3}\right)^{1-\nu+\alpha}+\frac{1}{\nu-1}\left(\frac{3}{2}\right)^{\nu-1}\right] .
\end{aligned}
$$

Proof. The proof of this theorem is the same as that of Theorem 2 up to (16). One has

$$
\begin{align*}
\sum_{1 \leqq n \leqq P^{(1-\beta) / \alpha}} \frac{1}{n^{\nu-\alpha}}<\int_{1}^{P(1-\beta) / \alpha} \frac{d x}{x^{\nu-\alpha}} & <\frac{\left(P^{(1-\beta) / \alpha}+1\right)^{1-\nu+\alpha}}{1-\nu+\alpha} \\
& \leqq \frac{1}{1-\nu+\alpha}\left(\frac{4}{3}\right)^{1-\nu+\alpha} P^{(1-\beta)(1-\nu+\alpha) / \alpha} \tag{20}
\end{align*}
$$

Substituting (16) and (20) into (12) establishes the theorem.
A multiply sequence is defined by the recurrence relation

$$
\begin{equation*}
x_{j+1}=\left\{\lambda x_{j}+\frac{\mu}{m}\right\}, \quad j \geqq 0 \tag{21}
\end{equation*}
$$

in which $\lambda>1, m>0, \mu \geqq 0$ are integers, and $x_{0}$ is arbitrarily chosen. Franklin [1] showed that, for almost all $x_{0}$, a multiply sequence is equidistributed. Let $m x_{0}$ be an integer which is relatively prime to $m$, then $m x_{j}$ is the sequence of integers
customarily employed as pseudo-random numbers. Inductively, one easily establishes the following explicit representation:

$$
\begin{equation*}
x_{j}=\left\{\lambda^{j} x_{0}+\frac{\mu}{m} \frac{\lambda^{j}-1}{\lambda-1}\right\} . \tag{22}
\end{equation*}
$$

If $m x_{0}$ is an integer, then the sequence $x_{j}$ is clearly periodic in the sense that $x_{j+m}=x_{j}$ for all $j$; however, it is generally desirable that the sequence contain as many members which are incongruent modulo $m$ as possible. This is accomplished by choosing for $\lambda$ a primitive root modulo $m$. A statistical function of interest is the distribution function, $\omega(\alpha)$. Let $P$ denote the period of the sequence; then, if $T(\alpha)$ is the number of elements of the sequence which do not exceed $\alpha$,

$$
\begin{equation*}
\omega(\alpha)=\frac{T(\alpha)}{P} \tag{23}
\end{equation*}
$$

Since $\omega(\alpha)=0$ for $\alpha \leqq 0$ and $\omega(\alpha)=1$ for $\alpha \geqq 1$, it is convenient to restrict $\alpha$ so that $0<\alpha<1$. The following discontinuous function will aid in the determination of $\omega(\alpha)$. Let

$$
\begin{array}{ll}
H_{\alpha}(x)=1, & 0 \leqq x<\alpha \\
H_{\alpha}(x)=0, & \alpha \leqq x<1 \tag{24}
\end{array}
$$

and define $H_{\alpha}(x)$ for all $x$ by periodic extension; then

$$
\begin{equation*}
\omega(\alpha)=\frac{1}{P} \sum_{j=1}^{P} H_{\alpha}\left(x_{j}\right) . \tag{25}
\end{equation*}
$$

The special case $\mu=0$ of (22) will be studied in which $\lambda$ is a primitive root modulo $m$ and $P=\phi(m)$, where $\phi(m)$ is the totient. Thus

$$
\begin{equation*}
x_{j}=\left\{\lambda^{j} x_{0}\right\} \tag{26}
\end{equation*}
$$

and $m x_{0}$ is one of the numbers of a reduced residue system modulo $m$. In order to investigate the distribution function of this sequence, several lemmas are needed. Let

$$
\begin{equation*}
\rho(x)=\frac{1}{2}-\{x\} ; \tag{27}
\end{equation*}
$$

then:
Lemma 1.

$$
|\omega(\alpha)-\alpha| \leqq\left|\frac{1}{P} \sum_{j=1}^{P} \rho\left(x_{j}\right)\right|+\left|\frac{1}{P} \sum_{j=1}^{P} \rho\left(x_{j}-\alpha\right)\right|, \quad 0<\alpha<1
$$

Proof. One has

$$
\begin{equation*}
H_{\alpha}(x)=\alpha+\rho(x)-\rho(x-\alpha) \tag{28}
\end{equation*}
$$

which may be established by consideration of the two cases $0 \leqq x<\alpha$ and $\alpha \leqq x<1$. Thus, from (25),

$$
\begin{equation*}
\omega(\alpha)=\alpha+\frac{1}{P} \sum_{j=1}^{P} \rho\left(x_{j}\right)-\frac{1}{P} \sum_{j=1}^{P} \rho\left(x_{j}-\alpha\right) . \tag{29}
\end{equation*}
$$

The lemma follows from (29).
Lemma 2.

$$
t>0 \Rightarrow-\frac{1}{2 t}+t \int_{-1 / t}^{0} \rho(x+u) d u \leqq \rho(x) \leqq \frac{1}{2 t}+t \int_{0}^{1 / t} \rho(x+u) d u
$$

Proof. From the monotonicity of $[x]$, one has

$$
\begin{equation*}
t \int_{-1 / t}^{0}[x+u] d u \leqq[x] \leqq t \int_{0}^{1 / t}[x+u] d u \tag{30}
\end{equation*}
$$

Since

$$
\begin{equation*}
[x]=x-\frac{1}{2}+\rho(x) \tag{31}
\end{equation*}
$$

substitution of this into (30) yields the lemma.
Lemma 3. $t>0$

$$
\begin{aligned}
& \Rightarrow-\frac{1}{2 t}+\sum_{n=-\infty}^{\infty} d_{n} e(n x) \leqq \rho(x) \leqq \sum_{n=-\infty}^{\infty} c_{n} e(n x)+\frac{1}{2 t}, \\
\left|c_{n}\right| & =\left|d_{n}\right| \leqq \min \left(\frac{1}{2 \pi|n|}, \frac{t}{2 \pi^{2} n^{2}}\right) .
\end{aligned}
$$

Proof. Use of the Fourier series

$$
\begin{equation*}
\rho(x)=\sum_{n=-\infty}^{\infty} \frac{e(n x)}{i 2 \pi n} \tag{32}
\end{equation*}
$$

yields

$$
\begin{align*}
t \int_{0}^{1 / t} \rho(x+u) d u & =\sum_{n=-\infty}^{\infty} c_{n} e(n x) \\
c_{n} & =t \frac{1-e\left(\frac{n}{t}\right)}{4 \pi^{2} n^{2}} \tag{33}
\end{align*}
$$

Thus

$$
\begin{equation*}
\left|c_{n}\right|=\frac{t}{4 \pi^{2} n^{2}}\left|e\left(\frac{n}{t}\right)-1\right| \leqq \frac{t}{2 \pi^{2} n^{2}} \tag{34}
\end{equation*}
$$

From the identity

$$
\begin{equation*}
e\left(\frac{n}{t}\right)-1=2 i e\left(\frac{n}{2 t}\right) \sin \frac{\pi n}{t}, \tag{35}
\end{equation*}
$$

one has

$$
\begin{equation*}
\left|e\left(\frac{n}{t}\right)-1\right| \leqq \frac{2 \pi|n|}{t} . \tag{36}
\end{equation*}
$$

Applying (36) to (33), one has

$$
\begin{equation*}
\left|c_{n}\right| \leqq \frac{1}{2 \pi|n|} \tag{37}
\end{equation*}
$$

Similarly,

$$
\begin{align*}
t \int_{-1 / t}^{0} \rho(x+u) d u & =\sum_{n=-\infty}^{\infty} d_{n} e(n x) \\
d_{n} & =t \frac{e\left(-\frac{n}{t}\right)-1}{4 \pi^{2} n^{2}} \tag{38}
\end{align*}
$$

Equations (33) and (38) show that

$$
\begin{equation*}
\bar{d}_{n}=-c_{n} \tag{39}
\end{equation*}
$$

and, hence, that

$$
\begin{equation*}
\left|d_{n}\right|=\left|c_{n}\right| \tag{40}
\end{equation*}
$$

Inequalities (34) and (37) are also valid for $d_{n}$; hence, the lemma is established. Lemma 4.

$$
t>0, \quad y_{j} \quad \text { real } \Rightarrow\left|\frac{1}{P} \sum_{j=1}^{P} \rho\left(y_{j}\right)\right| \leqq \frac{1}{P} \sum_{n=1}^{\infty} \min \left(\frac{1}{\pi n}, \frac{t}{\pi^{2} n^{2}}\right)\left|\sum_{j=1}^{P} e\left(n y_{j}\right)\right|+\frac{1}{2 t}
$$

Proof. In the inequalities of Lemma 3, $x$ is replaced by $y_{j}$ and summation is performed over $j$. Thus

$$
\begin{equation*}
-\frac{1}{2} t+\frac{1}{P} \sum_{n=-\infty}^{\infty} d_{n} \sum_{j=1}^{P} e\left(n y_{j}\right) \leqq \frac{1}{P} \sum_{j=1}^{P} \rho\left(y_{j}\right) \leqq \frac{1}{P} \sum_{n=-\infty}^{\infty} c_{n} \sum_{j=1}^{P} e\left(n y_{j}\right)+\frac{1}{2} t \tag{41}
\end{equation*}
$$

and, hence

$$
\begin{align*}
-\frac{1}{2} t-\frac{1}{P} \sum_{n==\infty}^{\infty}\left|d_{n}\right|\left|\sum_{j=1}^{P} e\left(n y_{j}\right)\right| & \leqq\left|\frac{1}{P} \sum_{j=1}^{\infty} \rho\left(y_{j}\right)\right|  \tag{42}\\
& \leqq \frac{1}{P} \sum_{n=-\infty}^{\infty}\left|c_{n}\right|\left|\sum_{j=1}^{P} e\left(n y_{j}\right)\right|+\frac{1}{2 t}
\end{align*}
$$

From Lemma 3, one has $\left|c_{n}\right|=\left|d_{n}\right| ;$ also, $\left|c_{n}\right|$ and $\left|\sum_{j=1}^{p} e\left(n y_{j}\right)\right|$ are even functions of $n$, hence,

$$
\begin{equation*}
\left|\frac{1}{P} \sum_{j=1}^{P} \rho\left(y_{j}\right)\right| \leqq \frac{2}{P} \sum_{n=1}^{\infty}\left|c_{n}\right|\left|\sum_{j=1}^{P} e\left(n y_{j}\right)\right|+\frac{1}{2 t} . \tag{43}
\end{equation*}
$$

Use of the inequality

$$
\begin{equation*}
\left|c_{n}\right| \leqq \min \left(\frac{1}{2 \pi n}, \frac{t}{2 \pi^{2} n^{2}}\right), \quad n>0 \tag{44}
\end{equation*}
$$

yields the lemma.
It will be convenient to introduce the function $\delta_{n, d}$ defined by

$$
\begin{array}{ll}
\delta_{n, d}=1, & d \mid n \\
\delta_{n, d}=0, & d \nmid n . \tag{45}
\end{array}
$$

Lemma 5.

$$
x_{j} \text { is defined by }(26), P=\phi(m) \Rightarrow\left|\sum_{j=1}^{P} e\left(n x_{j}\right)\right| \leqq \sum_{d \mid m} d \delta_{n, d} .
$$

Proof. Since $\lambda$ is a primitive root modulo $m, \lambda^{j}$ runs through a reduced residue system. Let

$$
\begin{equation*}
\lambda^{j} m x_{0} \equiv r \quad(\bmod m) \tag{46}
\end{equation*}
$$

where $r$ is the least nonnegative residue; then $r$ runs through a reduced residue system modulo $m$, and

$$
\begin{equation*}
\sum_{j=1}^{P} e\left(n \lambda^{j} x_{0}\right)=\sum_{r} e\left(\frac{n r}{m}\right) . \tag{47}
\end{equation*}
$$

The sum $\sum_{r} e(n r / m)$ is a Ramanujan sum whose value can be expressed in terms of the Möbius function, $\mu(n)$ [2]. Let $c_{m}(n)$ denote the Ramanujan sum; then one has

$$
\begin{equation*}
c_{m}(n)=\sum_{d \mid(m, n)} d \mu\left(\frac{m}{d}\right) . \tag{48}
\end{equation*}
$$

Thus

$$
\left|c_{m}(n)\right| \leqq \sum_{d \mid(m, n)} d=\sum_{d \mid m} d \delta_{n, d} .
$$

It is now possible to establish
Theorem 5. $x_{j+1}=\left\{\lambda x_{j}\right\}, 0<x_{0}<1, m \geqq 3,\left(m x_{0}, m\right)=1, \lambda$ is a primitive root modulo $m, \omega(\alpha)$ is the distribution function, $P=\phi(m)$

$$
\Rightarrow|\omega(\alpha)-\alpha|<\frac{4}{\pi} \sqrt{ } \frac{3 \ln m}{P}
$$

Proof. Use of Lemmas 1 and 4 yields

$$
\begin{equation*}
\left|\frac{1}{P} \sum_{j=1}^{P} \rho\left(x_{j}-\alpha\right)\right| \leqq \frac{1}{P} \sum_{n=1}^{\infty} \min \left(\frac{1}{\pi n}, \frac{t}{\pi^{2} n^{2}}\right)\left|\sum_{j=1}^{P} e\left(n x_{j}\right)\right|+\frac{1}{2 t}, \tag{49}
\end{equation*}
$$

and

$$
\begin{equation*}
|\omega(\alpha)-\alpha| \leqq \frac{2}{P} \sum_{n=1}^{\infty} \min \left(\frac{1}{\pi n}, \frac{t}{\pi^{2} n^{2}}\right)\left|\sum_{j=1}^{P} e\left(n x_{j}\right)\right|+\frac{1}{t} . \tag{50}
\end{equation*}
$$

Lemma 5 is now used to provide an estimate for the trigonometric sum appearing in (50). Define the summation variable $\gamma$ by $n=\gamma d$, then

$$
\begin{equation*}
|\omega(\alpha)-\alpha| \leqq \frac{2}{P} \sum_{d \mid m} \sum_{\gamma=1}^{\infty} \min \left(\frac{1}{\pi \gamma}, \frac{t}{\pi^{2} \gamma^{2} d}\right)+\frac{1}{t} . \tag{51}
\end{equation*}
$$

When

$$
\begin{equation*}
t \geqq \pi d, \tag{52}
\end{equation*}
$$

one has

$$
\begin{equation*}
\sum_{\gamma=1}^{\infty} \min \left(\frac{1}{\pi \gamma}, \frac{t}{\pi^{2} \gamma^{2} d}\right)=\sum_{1 \leqq \gamma \leqq t / \pi d} \frac{1}{\pi \gamma}+\sum_{\gamma>t / \pi d} \frac{t}{\pi^{2} \gamma^{2} d} \tag{53}
\end{equation*}
$$

Since

$$
\begin{equation*}
\sum_{1 \leqq \gamma \leqq t / \pi d} \frac{1}{\gamma}<1+\int_{1}^{[t / \pi d]} \frac{d x}{x} \leqq 1+\int_{1}^{t / \pi d} \frac{d x}{x}=1+\ln \frac{t}{\pi d}<\ln t \tag{54}
\end{equation*}
$$

one has

$$
\begin{equation*}
\sum_{1 \leq \gamma \leqq t / \pi d} \frac{1}{\pi \gamma}<\frac{\ln t}{\pi} \tag{55}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\sum_{\gamma>t / \pi d} \frac{1}{\gamma^{2}}=\sum_{\gamma=[t / \pi d]+1} \frac{1}{\gamma^{2}}<\int_{[t / \pi d]}^{\infty} \frac{d x}{x^{2}}=\frac{1}{[t / \pi d]} . \tag{56}
\end{equation*}
$$

Since

$$
\begin{equation*}
\frac{t}{\pi^{2} d[t / \pi d]} \leqq \frac{t}{\pi^{2} d} \tag{57}
\end{equation*}
$$

one has

$$
\begin{equation*}
\sum_{\gamma>t / \pi d} \frac{t}{\pi^{2} \gamma^{2} d} \leqq \frac{t}{\pi^{2} d} \tag{58}
\end{equation*}
$$

and, hence, (53), (55), and (58) yield

$$
\begin{equation*}
\sum_{\gamma=1}^{\infty} \min \left(\frac{1}{\pi \gamma}, \frac{t}{\pi^{2} \gamma^{2} d}\right)<\frac{\ln t}{\pi}+\frac{t}{\pi^{2} d}, \quad t \geqq \pi d . \tag{59}
\end{equation*}
$$

When

$$
\begin{equation*}
t<\pi d \tag{60}
\end{equation*}
$$

one has

$$
\begin{equation*}
\sum_{\gamma=1}^{\infty} \min \left(\frac{1}{\pi \gamma}, \frac{t}{\pi^{2} \gamma^{2} d}\right) \leqq \frac{t}{\pi^{2} d} \sum_{\gamma=1}^{\infty} \frac{1}{\gamma^{2}}<\frac{2 t}{\pi^{2} d} \tag{61}
\end{equation*}
$$

Hence, using (59) and (61) in (51), one obtains

$$
\begin{equation*}
|\omega(\alpha)-\alpha|<\frac{2}{P} \sum_{1 \leqq d \leqq t / \pi}\left(\frac{\ln t}{\pi}+\frac{t}{\pi^{2} d}\right)+\frac{2}{P} \sum_{1 \leqq d \leqq m} \frac{2 t}{\pi^{2} d}+\frac{1}{t} . \tag{62}
\end{equation*}
$$

Thus

$$
\begin{equation*}
|\omega(\alpha)-\alpha|<\frac{4}{\pi^{2} P} t \ln t+\frac{4 t}{\pi^{2} P} \sum_{1 \leqq d \leqq m} \frac{1}{d}+\frac{1}{t} . \tag{63}
\end{equation*}
$$

In obtaining (63), the estimate of (54) was used. Since

$$
\sum_{1 \leqq d \leqq m} \frac{1}{d}<1+\ln m<2 \ln m, \quad m \geqq 3
$$

one has

$$
\begin{equation*}
|\omega(\alpha)-\alpha|<\frac{4 t \ln t+8 t \ln m}{\pi^{2} P}+\frac{1}{t} . \tag{64}
\end{equation*}
$$

Let

$$
0<t \leqq m
$$

then

$$
\begin{equation*}
|\omega(\alpha)-\alpha|<\frac{12 \ln m}{\pi^{2} P} t+\frac{1}{t} \tag{65}
\end{equation*}
$$

The choice

$$
\begin{equation*}
t=\frac{\pi}{2} \sqrt{\frac{P}{3 \ln m}} \tag{66}
\end{equation*}
$$

yields the inequality of the theorem.
When

$$
\begin{equation*}
m=2^{\alpha}, \quad \wedge \quad \alpha>2 \tag{67}
\end{equation*}
$$

the period is given by

$$
\begin{equation*}
P=\frac{1}{2} \phi(m)=2^{\alpha-2}, \tag{68}
\end{equation*}
$$

and there is no primitive root; hence, Theorem 5 is not directly applicable. The estimation of the trigonometric sum depended on Lemma 5 which requires $r$ to run over a reduced residue system. However, if one considers two distinct $\lambda$ 's, the powers of which together constitute a reduced residue system, then Lemma 5 is again operative and the estimate provided by Theorem 5 is valid. In fact, one need only consider the sequence obtained on setting $\lambda=5$ in order to obtain one half of the required reduced residue system; the other half is provided by the negatives of the first half.

Bell Telephone Laboratories, Inc.
Whippany, New Jersey

[^0]
[^0]:    1. Joel N. Franklin, "Deterministic simulation of random processes," Math. Comp., v. 17, 1963, pp. 28-59. MR $26 * 7125$.
    2. G. H. Hardy \& E. M. Wright, An Introduction to the Theory of Numbers, 3rd ed., Clarendon Press, Oxford, 1954, pp. 234-239. MR 16, 673.
