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numerical method based on the theory of Kryloff and Bogoliuboff will now be

apparent. ......
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Integration Rules of Hypercubic Symmetry over
a Certain Spherically Symmetric Space

By J. N. Lyness

Abstract. A theory of integration rules suitable for integration over a hypercube

and having hypercubic symmetry has recently been published. In this paper it is

found that, with minor modification, this theory may be directly applied to obtain

integration rules of hypercubic symmetry suitable for integration over a completé

íi-dimensional space with the weight function exp(— Xx — x2 ■■• —x„). As in

the case of integration over hypercubes, an n-dimensional rule of degree 2¿ + 1

may be constructed requiring a number of function evaluations of order 2'n'/t\,

only.

1. Introduction. In this paper we are interested in generalising the theory and

results of investigations about the use of symmetric integration rules for a hyper-

cube, given in Lyness [2] and [3] which we refer to as Part I and Part II, respec-

tively. The particular generalisation that we consider here is the construction of

rules of the type

Í0O        «CO «CO
/    •■'•'/    exp[ — xx2 — x2 ■ • • — x«2]fixx, X2, • • • , xn) dxx dx2 ■ ■ • dxn

00   J— oO •'— 00

— S Ai f(*u , *2i , • • • , *,«■)•

Such integration rules have been considered before (Stroud and Secrest [4]). It is

conventional to term such a rule to be a rule of degree d if the approximate equality

may be replaced by an exact equality whenever / is a multinomial of degree less

than or equal to d.

Most of the results about symmetric rules for integration over hypercubes in

Parts I and II may be derived in almost identical form for this integral. To avoid

unnecessary repetition, we refer to Parts I and II for the details of the derivations

of such results; we indicate here only the differences or modifications in these re-

sults as they occur.
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2. The Integration Operator, Ir). We define the symmetric integration rule

operators (R and R exactly as in Section 1 of Part I with the number a set, for con-

venience, equal to §. In this case, all the operator algebra connected with rules,

such as the projection of and the extension of rules and the number of points re-

quired by a rule, as described in Sections 2 and 3 of Part II, and in Sections 1 and 5

of Part I, may be used quite independently of the region of integration.

Without a definition of an integration operator and its connection with the rule

operators, the rule formalism is of little practical value. We introduce instead of

(I; 1.1) and (I; 1.7) an r-dimensional integration operator Ilr} defined by

/    / ' " " / exp[ — Xx2 — x2t ■ ■ ■ — x«2]f dxx dx2 ■ ■ • dx«

(2.1)       I(n)f = J

I    I ■ ■ ■ I exp[—x2 — x2 ■ ■ ■ — xn2] dxx dx2 dx«

The denominator is equal to in)nl2.

We turn our attention to finding rules Rir) which are useful approximations to

I r in the sense that

ß(r)/ ~ 7Cr)/,

the approximation being exact at least when / is a constant function. For example,

a possible two-dimensional rule is

(2.2) B(2) = (R(V2,0)

and using the definition in Part I, we may write

(2.3) «<»/ - >(/(£.o) +/(-» +/(0,^) + /(«, -i)).

The corresponding integral given by (2.1) is

(2.4) Imf = i riexV[-x2 - y2\fix, y) dxdy
TC J—ccJ

and so, in the form of ( 1.1 ), the integration rule (ît( V2, 0) leads to the approximate

equality

/    / exp[-x2 — y2]fix,y) dxdy

['(>)+'(->)+'(*á)+'(*-^)]-

This differs from the corresponding form for integration over a hypercube because

of the "normalising" factor on the right-hand side.

3. The Error Coefficients. The error expansion described in Sections 2 and 3 of

Part I may be carried out in the same way. In one dimension we find, by successive

integration by parts, that an expansion of the type

(3.1) fÄ(«)/ - /'"/ = d2ia)IWf2) + d4(a)/n)/W +'• • •

(2.5)
7T

4
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exists, where /<r> is the rth derivative function of /. The coefficients d2r(a) are

termed error coefficients. We may obtain a generating function for the error co-

efficients by inserting into (3.1) the function

(3.2) / = 2cosh0x.

Carrying out the integrations analytically and setting

(3.3) doia) = 1,

we find, after some rearrangement,

(3.4) ¿ d2ria)<¡>2' = cosh ^ exp(- |2) - Gia, <t>).

This generating function may be used to find expressions for the error coefficients,

namely,

(3.5) d2r(0) = (-l)7(22rr!)

and

(3.6) ÍU«)=2-2'É?!^P^-1.„-o (2s) !(r — s) !

A convenient expression for calculating the error coefficients is

d'7\     a (   \      dteiO)   ,  a2 du-viO)   , a*-2      d2(0)   ,  a2*   , fn.
(3.7) d»(a) =^r-+--¥-r- + .■■(28_2)¡-_+—<fe(0),

in direct analogy with (I; 2.15).
All those results in Sections 2 and 3 of Part I which do not depend on the calcu-

lated values of c2ria) hold for this region of integration if we replace the terms as

indicated :

(3.8) a2rc2riR)^d2riR),

(3.9) a-* h.

In particular, the error coefficients of a composite rule,

(3.10) Rw = £{<«(«,),

are given by

(3.11) d2riRw) = EW*(«.),

and the error expansion takes the form

(3.12) Rwf - Iwf = d2(ß(1))/(1)/(2) + d4(na))/<1)/(4) + ■ • • .

In Section 3 of Part I we treat the error coefficients of n-dimensional rules. We

may derive the error expansion for an n-dimensional composite rule,

(3.13) R(n) = Z^i"",

where

(3.14) (Ri(n)  = (R(afl , ai2 , ■ ■ ■ , ain),
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in terms of the error coefficients d2eia¡j). The result is

.Si (

(3.15) RMf - iMf = ee <i,1,,..,.(fi(,y*).,„ ,t.,a/  ...  ,

where

(3.16) d2si2,t...2tniRinl) - £fcd*.lS.1...s,n((R,<"))

and

(3.17) d2.1í.,---s.„((R¿ " ) = — 2J dj«, («,-/>,) ds.,(aii>2) ••• d2.„(a<pn).
n! p

Here the integers Pi, P2, • • • , Pn are a permutation of the numbers 1,2, ■ • • , n,

and the summation symbol indicates that we sum over all such permutations. We

may also derive the formula for the error coefficient of the convolution product of

one-dimensional composite rules (given by I; 3.25), which includes the important

special case

(3.18) d2si28r..28„((Ä<u)") = duiiRW) d2a2iRa)) ■ ■ ■ d2.n(ñ(1)).

4. Applications of Rule Extension. In Section 4 of Part II we introduced a set

notation which helped to clarify the situation regarding the degrees of an «-dimen-

sional rule ß(8> and an r-dimensional rule ßCi> in the case in which

(4.1) ß(r)=>ß(s).

The principal result of that section is:

Theorem 4.2. If ß(r) =» ßc,) and Ru) is of degree 2t + 1, the degree of ß(r) is at

least 2i' + 1, where t' = min(s, t).

The proof of this theorem rests principally on the results about rule projection

and rule extension given in Section 2 and 3 of Part II. The dependence on the inte-

gration operator is through equation (II; 4.2) which states

(4.2) I{r)fixx ,x2,---,xs)  = IU)fixx, x2, ■ ■ ■ x.).

This equation is also true if /<r) is defined as in Section 2 of this paper. As the theory

of rule projection and rule extension is independent of the region of integration, it

follows that all the results of Section 4 of Part II apply also for this integral, and,

in particular, Theorem 4.2 is true.

The systematic construction of high-dimensional integration rules may be

effected by following the same procedure as described in Sections 5 to 7 of Part II.

In the examples, the role of the Gauss-Legendre quadrature formula is taken over

by the Gauss-Hermite quadrature formula. This is of exactly the same form, being

a it + 1)-point rule of degree 2t + 1, namely,

[(l + D/21

(4.3) Gi+i =     E    fi<R(0i).i=i

The values of f¿ and 0, are available in the literature. (See, for example, Kopal

[1].)
The rules £,¡"(0)(G<+i)' are as before n-dimensional integration rules of degree

2t + 1. The only difference is that different values of f, and 0, are used. In the
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example in Section 6 of Part II, where we determine E2niO)iG3)2, we have to re-

place (II; 6.6) and (II; 6.7) by

(4.4) G, = f«(0) + J(R(V6),

(4.5) (G3)2 = 4(R(0, 0) + #R(0, V6) + i(R(V6, V6).

The expression for £'2n(0) (G3)2 is the same as in (II; 6.8) and this leads to the rule

£V(0)(G3)2 = tVK«2 - 7n + 18){<R(0)}"

+ 2n(4 -n))(R(0)¡"-1*(R(V6) + nin - l)j(n(0)}"~2 * (R(V6, V6)],

in direct analogy to (II; 6.9). ,

The rules G<+i may be obtained in exactly the same way as in Section 7 of Part

II. Here we have to replace (II; 7.8) by

(4.7) Ia)XiW---x? = (*)'.

Thus <t> in (II; 7.9) is given by

(4.8) <t> = l/i2ßx2)'.

With this adjustment the subsequent formulas and rules are valid. We find

(4.9) Gin+\ = ^r-i(0)(Gi+1)1-1 + -i— [EtniO)\(Rißx)\' - m-iWMßi)}"]

and

pÍGÜD E = 1 + t (fy + ■ ■ ■ + t"1 (t * j) + 2* (fy it even),

(4.10) = 1 + it + 1) (j\ + ■ •- + « + D'-'i   n_ \

+ 2'(f\ «odd).

In the example G4(n> given in (II; 7.20) the incidental parameters are different,

though the rule is of identical form. These parameters are :

fi = (3 - V6)/6,

f2 = (3 + V6)/6,

(4.11) ßx2 = 2(3 + V6),

ß-{ = 2(3 - V6),

0 = 1/8/3,6.

The number of points required by any of these rules is, in general, the same as that

stated for the corresponding rule in Part II; exceptionally, the vanishing of a coeffi-

cient of a basic rule leads to a reduction. An example of this occurs in (4.6) above.

There,

p(E2niO)iG3)2) = 2n2 + 1,        n = 2, 3, 5, 6, • • • ,

(4.12)
= 25,        n = 4,
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the exceptional case n = 4 occurring as a result of the factor (n — 4) in the coeffi-

cient of one of the basic rules.

The rules G,(n' establish for this region of integration a conjecture (Thacher

[5]). This conjecture may be stated in exactly the same form as in Section 8 of

Part II; there exists a set of integration rules G<(+i, Gî+Ï", • • ■ in t, t + 1, • • •

dimensions with the property

(4.13) Lim pÍGÍI[)/2' (f\ = 1.

5. Discussion. The integration rules derived above are all of the type defined

in Section 1 of Part I; that is, they are all .invariant under interchange of coordi-

nates and the alteration of the sign of any coordinate. We refer to this type of rule

as one having hypercubic symmetry.

The space considered here is spherically symmetric. No advantage of this full

symmetry has been taken in constructing these rules. Rather, we have used only the

(much weaker) hypercubic symmetry. One might naturally expect such rules to be

inferior or less economic in terms of function evaluations than rules derived on the

basis of full spherical symmetry. Stroud and Secrest [4] have published rules for

values of n and t both less than 4 which do not have hypercubic symmetry and

which use fewer points than any corresponding rules which do have hypercubic

symmetry. However, in the case of n è < è 4, the presently available rules derived

using the spherical symmetry are of a product type and require pÍSp) points,

where

*(&■)  =  (« + D" it odd),

= (i + 1)" - t" + 1        (¿even).

(See Stroud and Secrest [4], Section 3.) This is marginally fewer than the number

required by the product Gaussian:

püGí+x)n) = it + iy.

However, the rules derived in the present paper, which have only hypercubic

symmetry, require only

pÍGÍVi) ~ 2' fy .
(See Eq. (4.10).)

Thus the present situation is that the most economical rules available for this

spherically symmetric region have only hypercubic symmetry when n ¿ 1 ä 4.
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