
Variation Principles for an Arbitrary Operator. Ill

By L. M. Delves

Abstract. The methods, described in two previous papers, for generating varia-

tion principles for the matrix elements of Hermitian operators are extended here in

several ways. The method is first extended to cover inhomogeneous equations. A

defect of the original formulation, that it involved two trial functions, is removed by

rewriting the principle so that one only appears. Finally, variation-iteration schemes

are proposed.
l

1. Introduction. In two previous papers [1], [2], hereafter called I and II, the

following problem was considered. Given two states | a), | ß), which are solutions of

the homogeneous equations

iHa-Ett)\a) =0,
(1)

(H,-E,)\ß) =0,

find a variation principle for the matrix element (a j W | ß) of an arbitrary Her-

mitian operator W. We here extend these results in several ways. We first extend

the method to cover inhomogeneous equations of the type A | y) = | b), where

| b) is a given vector, and derive variation principles for the number (7 | W | y).

Second, we are able to simplify the results somewhat. The principles derived in-

volve two trial functions for each state | a) ; in Section 3 we show that an alterna-

tive principle may be given involving a single trial function. This principle requires

the inversion of the operator W — Ex, where E-i is a constant; for many operators

W of practical interest, this inversion is trivial.

Finally, in Section 4 we give a suitable variation-iteration scheme for use with

these principles, and thus a practical way of improving the results.

We use throughout the notation of finite matrices. Thus, the states | a), \ ß)

will be written a, ß; and the matrix element (a\W\ß) will be written a+Wß. This

notation is chosen for its brevity and ease of printing; the results are directly

applicable also to differential operators Ha , providing the boundary conditions are

such that these are Hermitian. This requirement precludes scattering states from

our discussion; the modifications to the method required to include these were

given in II, and similar modifications go through for the cases treated here.

2. Inhomogeneous Equations. We consider a system represented by the state

vector xo satisfying the (linear) inhomogeneous equation

(2) Hxo = b,

where the matrix H is hermitian; suppose that we wish to find a variation principle

for the quantity (W) = x0+lFxo, for some Hermitian operator W. Then, following

the procedures of I and II, we consider the associated equation

iH + \W)xx = b,
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which leads to

Hxi = — Wxo,

(3) dxx
Xl=  dX

Then it is easy to show, following again the arguments of I, that a variational

estimate of (W) is [W], where

(4) [W] = Xo+HXl + xi+#xo - 6+xi - Xl+b + x0+Wx0.

Similarly for off-diagonal matrix elements: given two systems x0, yo :

HiXo = b,

(5)
H2yo = c,

we can define Xi, yi through

HiXi = -Wyo,
(6)

Hm = -Wx0,

and find as a variation principle for y0+Wxo :

o\y0+Wxo] = 0,    where

(7)
[y0+Wxo] = yo+Wx0 + yo+H2yi + x^H&o - c+yx - x+b.

A variation principle for Xo+Wy0 follows from taking the conjugate transpose of

(7).
An Example. As a simple sample of the use of these principles, we consider a

set of linear equations (2) with

(8)

b+ = (10,1,5),

and suppose we are interested in the number XI xo» = x0+IFiXo = (Wi), where the

operator Wi = I, the unit operator. The exact solution to (2) and (3) in this case is

(9) Xo+ = (1, 2, 3) ;       xx+ = ( -f, 2, f ),        (W,) = 14,

and we assume we have found approximate solution xot, xu :

xt, = (0.9, 2.2, 3.3),
(9a)

xt, = (-1.9, 1.9,0.5).

The errors in these approximate solutions are about 10%. The vector xoi gives, as

a first approximation to (Wi):

(Wi)t = xtWiXot = 16.54,

while the variational principle (4) gives, with this xoj, xu :
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[Wi] = 14.18

with an error of about 1.3% compared to 18% in (Wî)t.

This is likely to be a particularly favourable example because of the regular

form of W chosen. However, we can repeat the calculation for a singular W2. We

choose

(10) Wt = Í       1      J

for which Xi+ = ( — 1, 1, 1) and (Wi) = x22 = 4, so that the variation principle

for this choice of W gives an approximation td a single component of Xo.

With the same approximation as before for x0( and xît = (—0.9, 0.9, 1.1), we

find (Wi), = 4.84, [W,] = 4.24.
The improvement in this case, although marked, is less dramatic.

3. An Alternative Principle. The variation principles developed so far in these

papers have required the use of two trial functions, x0i and x», for each state x0

of interest. It is possible to rewrite the equations so that only one of these functions,

Xi, appears, while retaining the variational character of the results, and we do this

here. The new principle then involves the operator (Ex — IF)-1; but when this

operator can be evaluated, the new form may be easier to use than the old.

We consider here the eigenvalue equation treated in I. Suppose, for Hermitian

H and eigenvalue E0,

iH — E0)xo = 0,       x0+Xo = 1,

and that we are interested in

(11) (W) = Xo+Wxo.

We shall assume Ee is known (as discussed in I, a variational approximation to E0

is sufficient to retain the variational character of our results), and we shall write

H — Eo = L. Then we define xx as a solution of the equation

(12) Lxi = (Ei - W)x0,

so that

Ex = xo+Lx1 + Xo+Wxo = (W).

Then Xi also satisfies the equation

Axi = 0,
(13) A = L(Ei - W)~lL.

The operator A is Hermitian, since L and W are Hermitian.

Then it is easy to show that a variation principle for (W) is [W], where

[W] = Ex + xl+Axl,

(14)
5[W] = 0.

This principle does not involve x0 explicitly; methods of using (14) in practice are
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similar to those discussed in I. It may appear that an approximation xot to x0 is

still necessary, first to give an approximation Eu to Ex through

Eu = xt, Wxo,

and second, to determine the normalization of xx through (12). This is not so, how-

ever; for a given form of xx, which may itself contain a number of parameters, [W]

is a function of Ex ; the best value of Ex is then that for which d[W]/dEx = 0.

Further, the normalization of Xi may be specified by imposing the condition

xi+L(Ei - Wy2Lxx = 1,

which, from (12), is equivalent to x0+x0 = 1, but which does not require a trial

function for Xo.

The same procedure can be carried through for off-diagonal elements of W,

but the results are unfortunately much more complicated. We assume we have

LiXo = 0,       Xo+x0 = 1,

(15)
¿2?/0  =  0, i/o   2/0  =   1,

for Hermitian Lx, L2 ; and we are interested in y0+Wx0 for some operator W.

We shall assume

(16) yo+Wx0 = x0+Wy0

so that the matrix element is real. Then we introduce functions xx, yx satisfying

LiXi = #1X0 — Wyo,

(17)
L2yi = E2ya - Wx0,

for which Ex = x0 Wyo, E2 = y0+Wx0 = Ex from condition (16). Then it is pos-

sible to show that a variation principle for yo+WxB is

%iIFxo] = 0,

(18)    [y0+Wxo] = Ex- h[xi+LxExBLxXx + yx+L2ExBL2yx

+ Xx+LxWBL2yx + yx+L2WBLxXx\,

(18a) B = iW2 - Ex2)~\

Equation (18) reduces to equation (14) when Lx = L2.

As for the diagonal elements, it is necessary to fix the normalization of Xi, z/i

in some way. One possible way, which does not involve a knowledge of a trial

function for x0,2/0, is through the relations

yx+L2ExB2WLxXx + yx+L2Ex2B2L2yx
(19a) » «  .

+ Xx+LxWExB2L2yx + Xx+LxW2B2LxXx = 1,

Xx+LxExB2WL2yx + xx+LxEx2B2LxXx

+ yx+L2WExB2LxXx + yx+L2W2B2L2yx = 1.

Equations (19a), (19b) reduce to the conditions x0+xo = 1, ya+ya — 1, for exact

solutions Xx, 2/1 of (17).
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It is interesting that together they imply

(19c) Xx+LiBL1Xx = ySLîBLîyx,

which may be used to simplify (18), since Ex is a constant.

The complicated nature of (18) and (19) would seem to rule them out as a

practical means of calculation; the original principle of II would appear easier to

use.

Inhomogeneous Equations. The method carries through also for inhomogeneous

equations of the type considered in Section 2. We give here only the results for the

diagonal elements. With the same notation as Section 2, a variation principle for

<IF> is

(20) [W] = -(xi+6 + 6+xi + xx+HW~lHxx),

for which ô[W] = 0, where Xi satisfies (3) and (2).

An Example. If we repeat the example of Section 2 for W = Wi = /, and with

the same approximation xx, to xi, we find, from (20),

[Wx] = 13.64.

Thus in this case, equation (20) gives less accurate results than equation (7), for

the trial functions considered. Equation (20) cannot be used to calculate (W2),

since W2 has no inverse.

4. A Variation-Iteration Scheme. So far we have assumed that approximations

Xoí and xu to x0 and xx are available. We give here one method by which a sequence

of such approximations may be generated. For simplicity, we again limit the dis-

cussion to diagonal matrix elements of IF, although off-diagonal elements may be

considered similarly.

We consider the equations

(21a) (// - Eo)x0 = 0,       xo+Xo = 1,

(21b) iH - Eo)xx = iEx - W)x0,       Et = x0+Wx0,

and suppose that we have approximations xi(n>, 2?i<n), Xo<n>, E0ln) to X\, E\, xo, E0.

Then we can define in + l)st approximations in several ways:

( 1 ) Possible iterative schemes for x0 are

(22a) Xo(n+1) = AHx0in\

or

(22b) xo(n+1> = AiEx(n) - Wyl(H - E¿n))xxín\

where in each case the multiplier A is determined from the condition

_ (n+l)+     (n+1)   _   t
Xo Xo =1.

(2) The obvious iterative scheme for E0 is

(23) E0{n+1) = Xo("+1>+//xoU+1).

(3) Possible iterative schemes for Xi are
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(24a) iH - Eoin+1)Wn+" = (£?i(n) - TF)x„(B+1\

or

(24b) iH - £0(n+1>)x1u+1) = «JF)o(n+1) - IF)xo(B+1),

or

(24c) xx<n+1) = ß±^ [HxxM + ÍW - Exln))xoln+1)),

or

(24d) xxln+1) = ^¿5, [HxF + ÍW -   <JF)o(n+UW"+1)].

(4) Finally, a nonvariational estimate of E\ = xq Wxq is

(25a) Ex{n+1) = <IF)o(n+1) » x0(n+1,+IFxoC"+1),

while the variational estimates we have been discussing may be written

(25b)    Ex(n+1) = £i(n) + Xxin+1)+iH - Eoin+1))iExW - W)~l(H - £o("+1))*i("+,),

or
Ex^l) - (IF)o<n+I)

+ Xlin+1)+iH - Eoin+1))i(W)oin+1) - W)~\H - Eoin+1))xxin+1),
(25c)

or

(25d)
Elin+1) = (W)oin+l) + x0in+1)+iH - E¿n+»)xx(n+1)

+ xr"1

In each of the alternative forms (25), any of the forms (24) may be used for X\ .

We shall consider here several representative overall schemes, which we define as

follows: First, (22b) appears to have no advantages over (22a), unless (22a)

should not converge. We therefore consider only (22a), and define several approxi-

mations to (W) in an obvious notation as follows:

(W)o = Ex (25a),

(W)x = Ex (24c, 25c),

(W)i = Ex (24c, 25d),

(26) (W)3 = Ex (24b, 25d),

(W)t = Ex (24b, 25c),

(W)t = Ex (24a, 25b),

(W)e = Ex (24a, 25d).

The forms using (24a), (24b) are at first sight attractive, since these generate

directly the product (// — E0)xx, which is all that is required by (25) ; further, we

do not then need to estimate E0 separately. However, it is easy to see that they are

never a useful sequence. In fact, we have
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(27)
m (n+1)
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(n+I) o  /wn (n)= (w)r+l> = 2 (ww

(W)r+1> = 2 <W0/"' - (W)o
(n+l)

(W)¿n*n,

¿ = 5, 6.

Thus, if the sequence (W)0 converges, the sequences (W}6 and (W)t in general do

not; further, while (W)3 and (W)4 converge, they will give at each stage a worse

approximation than (W)o.

An Example. As an example, we consider a simple eigenvalue problem that has

been used previously [3]. We take

(28) H-

n
W-

and first approximations x0ni) = Xir<1> = (1, 0, 0).

The results for xo(n), xxin\ E0(n), #iCn) are listed in Table I.

Table I.

Variation iteration results for the matrix element (W) defined by equation (28).

The (W)i are from different approximate schemes defined in equation (27).

£\,<"' (ttV"><W>i<">(RV° (W),m (W)„

1,0,0
0.902, -.431, -.039

.913, -.404, -.062

.912, -.406, -.060

1,0,0
0.823, -.378, -.033
0.833, -.355, -.051

-23
-27.93
-27.97
-27.97

1
1.188
1.171
1.172

1
0.876
1.165
1.172

1
1.168
1.172
1.172

1
0.812
1.205
1.172

1
0.812
0.453

It is seen that, as expected, (W)b does not converge at all, while (W)3 is a very

poor approximation. In this example, (W)2 is a better approximation than (W)x ;

this is due to the circumstance that the matrix W — Ex is nearly singular.

As expected, the variational estimate (W)2 is a better approximation than the

nonvariational (W)o ■ In fact, to the number of figures retained, (IF)2is) is already

equal to (PF)°°. This example is a testing one since x0<n> converges very rapidly to

xo ; the improvement to be expected in general from the variation principle is greater

than shown here.
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