On the Sum of the Series $\sum_{i=0}^{\infty}\left(t^{\nu} /[u \nu+m]!\right)$

By Bogumił Leszczyński

An estimation of error in summing the series

$$
\begin{equation*}
\sum_{\nu=0}^{\infty} \frac{t^{\nu}}{\Gamma(\beta \nu+2)}, \quad 0<\beta<1 \tag{1}
\end{equation*}
$$

obtained by a solution of Volterra's equation

$$
\begin{equation*}
\phi(x)=a x+b \int_{0}^{x}(x-z)^{\beta-1} \phi(z) d z, \quad a=\text { const, } b=\text { const }, \tag{2}
\end{equation*}
$$

leads to series of the form

$$
\begin{equation*}
S_{u, m}(t)=\sum_{\nu=0}^{\infty} \frac{t^{\nu}}{[u \nu+m]!} \tag{3}
\end{equation*}
$$

where $[x]$ denotes the largest integer no greater than the real number x, m a nonnegative integer, and u real, positive and rational.

The series (3) is absolutely and uniformly convergent for all real values of t and therefore not dependent on the sequence of terms. Changing the sequence of terms in (3) we obtain

$$
\begin{equation*}
S_{u, m}(t)=\sum_{j=0}^{q-1} \sigma_{u, m}^{j}(t) \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
\sigma_{u, m}^{j}(t)=\sum_{i=0}^{\infty} \frac{t^{q i+j}}{[u j+m+p i]!} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
u=\frac{p}{q} \tag{6}
\end{equation*}
$$

where p and q are positive integers with greatest common divisor equal to 1 . Substituting in (5)

$$
\begin{equation*}
z^{p}=t^{q}, * \tag{7}
\end{equation*}
$$

we have

$$
\begin{equation*}
\sigma_{u, m}^{j}(t)=t^{j-[u j+m] / u} s_{u, m}^{j}(z) \tag{8}
\end{equation*}
$$

where

$$
\begin{equation*}
s_{u, m}^{j}(z)=\sum_{i=0}^{\infty} \frac{z^{[u j+m+p i]}}{[u j+m+p i]!} . \tag{9}
\end{equation*}
$$

Differentiating (9) $[u j+m]$ times with respect to z we obtain

$$
\begin{equation*}
s(z)=\frac{d d^{[u j+m]} s_{u, m}^{j}(z)}{d z^{[u j+m]}}=\sum_{i=0}^{\infty} \frac{z^{p i}}{(p i)!} . \tag{10}
\end{equation*}
$$

Received December 21, 1964.

* z is an imaginary number when q is odd and p even.

But (10) is the solution of the p th order linear differential equation

$$
\begin{equation*}
s^{(p)}(z)=s(z) \tag{11}
\end{equation*}
$$

with initial conditions

$$
\begin{equation*}
s(0)=1, \quad s^{(k)}(0)=0 \quad(k=1,2, \cdots, p-1) \tag{12}
\end{equation*}
$$

The characteristic equation of (12) is

$$
\begin{equation*}
r^{p}-1=0 \tag{13}
\end{equation*}
$$

If r denotes a primitive root of p th order of unity, the general solution of (11) has the form

$$
\begin{equation*}
s(z)=\sum_{l=1}^{p} A_{l} \exp r^{l} z \tag{14}
\end{equation*}
$$

and taking (12) into consideration we have

$$
\begin{align*}
\sum_{l=1}^{p} A_{l} & =1, \quad A_{l}=\text { const } \\
\sum_{l=1}^{p} A_{l} r^{l k} & =0 \quad(k=1,2, \cdots, p-1) \tag{15}
\end{align*}
$$

For finding A_{l} we use Cramer's rule, and since there are Vandermonde's determinants in our case

$$
A_{l}=\frac{\prod_{k=2}^{p} \prod_{n=1}^{k-1}\left(b_{k}-b_{n}\right)}{\prod_{k=2}^{p} \prod_{n=1}^{k-1}\left(r^{k}-r^{n}\right)}, \quad \text { where } b_{n}= \begin{cases}r^{n} & \text { when } n \neq l \tag{16}\\ 0 & \text { when } n=l\end{cases}
$$

or

$$
\begin{equation*}
A_{l}=\prod_{k=1 ; k \neq l}^{p} \frac{1}{1-r^{l-k}}=\prod_{k=1}^{p-1} \frac{1}{1-r^{k}} \tag{17}
\end{equation*}
$$

it follows that all A_{l} are equal, and, thus, from (15),

$$
\begin{equation*}
A_{l}=\frac{1}{p} \tag{18}
\end{equation*}
$$

Putting (18) into (14) we have

$$
\begin{equation*}
s(z)=\frac{1}{p} \sum_{l=1}^{p} \exp \left(r^{l} z\right) \tag{19}
\end{equation*}
$$

Integrating both sides of (19) $[u j+m]$ times in the interval $(0, z)$ we obtain

$$
\begin{equation*}
s_{u, m}^{j}(z)=\frac{1}{p} \sum_{l=1}^{p} \exp \left(r^{l} z\right) r^{-l[u j+m]}-B, \tag{20}
\end{equation*}
$$

where

$$
\begin{equation*}
B=\frac{1}{p} \sum_{k=1}^{[u j+m]} \frac{z^{[u j+m]-k}}{[u j+m-k]!} \sum_{l=1}^{p} r^{-l k} \tag{21}
\end{equation*}
$$

But

$$
\sum_{l=1}^{p} r^{-l k}=\sum_{l=1}^{p} r^{l k}= \begin{cases}0 & \text { when } k \text { is divisible by } p \tag{22}\\ p & \text { when } k \text { is not divisible by } p\end{cases}
$$

and therefore

$$
\begin{equation*}
B=\sum_{k=1}^{[(u j+m) / p]} \frac{z^{[u j+m]-p k}}{[u j+m-p k]!} . \tag{23}
\end{equation*}
$$

Returning to the variable t we obtain finally

$$
\begin{align*}
& S_{u, m}(t)=\sum_{j=0}^{q-1} t^{j-[u j+m] / u} \\
& \cdot\left\{\frac{1}{p} \sum_{l=1}^{p} \exp \left(r^{l} t^{u}\right) r^{-l[u j+m]}-\sum_{k=1}^{[(u j+m) / p]} \frac{t^{[u j+m-p k] / u}}{[u j+m-p k]!}\right\} \tag{24}
\end{align*}
$$

Warsaw Agricultural University Chair of Mathematics
ul. Rakowiecka 8
Warsaw, Poland

