
Methods and Applications of Power Series

By Jay A. Leavitt

Power series in the past played a minor role in the numerical solutions of ordi-

nary and partial differential equations. There have been good reasons. It is often

difficult to operate with power series. Finding the series expansion of

d u _ „ /   du dk 'w\

dxk ~     V ' dx ' " ' ' (¿rFy

can be arduous. Furthermore if the series can be found, often it will converge in too

small a region. There are, however, certain advantages which make their use de-

sirable. A truncated series forms a closed approximation of the solution which can

be evaluated at any point in the region where the series converges. Instability, which

causes difficulties for finite difference solutions, does not affect the power series

solutions. The series solution, with its great accuracy, permits study of the analytic

properties of the solution to an extent which is unachievable with a finite difference

solution; and the series solution can be used as an intermediate result which can be

integrated and differentiated easily. If a finite difference solution is only an inter-

mediate step in the solution of a problem, computer storage problems can be a major

concern. Derivatives and interpolated values of the difference solution can be very

unreliable. In this paper we intend to show how many of the disadvantages of power

series can be overcome by automatic coding procedures and to indicate some of

their useful properties and results.

In this paper we use the convention that a sum is zero if the upper limit is less

than the lower.

Let P(I) denote the coefficient of x/_1 in the polynomial P(x) = X^=i P(I)x'~1

and let Q(I, J) denote the coefficient of x'_1?/_I in the polynomial Q(x, y)  =

TUYsUaa^w-y-1.
The following formulas for integration and differentiation are well known:

If Q(x, y) = ¡x P(x, y) dx or R(x, y) = j" P(x, y) dy then

Q(I,J) =P(/-1, J)/(I- 1)    and   R(I, J) = P(I, J- l)/(J - 1).

If Q(x, y) = dP(x, y)/dx or R(x, y) = dP(x, y)/dy then

Q(I,J)=IP(I + 1,J)    and   R(I, J) = J P(I, J + 1).

The formulas for multiplication and division are as follows:

If R(x, y) = P(x, y)-Q(x, y) then

R(I, J) = 12  12P(L, M)Q(I - L + 1, J - M + 1).
£=1  U-l

If R(x, y) = P(x, y)/Q(x, y) then

RU' '/) - ñ7T-ñ (P(/> J) - 12 12 R(K, L)Q(I -K+l,J-L+l)
V(l,   1)   \ JC=1  Z.-1

- ¿ R(I,L)Q(l,J - L+1)Y
L-l /

They have been used in machine calculations by R. D. Richtmyer [1].
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The formula for inverting a power series is available in many calculus texts:

If Q = Q(l) + 12k=íQ(K)(P - P(l))*-1 and P = P(l) + £/=2 P(J).
(e-Q(l))J_lthen

JC-l

P(2) - 1/Q(2) andP(K) = -£P(/)(Q - Q(D)k1/Q(2)k'1

where (Q — Q(l))i_1 is the coefficient of (P — P(1))K_1 in the expansion of

(Q - Q(l))' (K = 3, 4, • • •)• The expansion of (Q - Q(l))1 can be found by

using the multiplication algorithm or by the formula for finding a power of a poly-

nomial (see below).

The next set of formulas is for determining the expansions of functions of a func-

tion in two variables, P(x, y) = P(Q(x, y) ). If A is the region of radius r where P

converges, then the expansion R is a valid representation of P(Q) in the region

where Q converges and | Q | ;£ r. The algorithms, A, B, C, and D, below, were de-

rived by using Leibnitz' rule of differentiation.

A. If
(1) Q(x, y ) = P(x, y)z where z is any positive or negative real number then

(2) dQ/dy = zQ(dP/dy)/P or
(3) PdQ/dy = zQdP/dy.

Applying the differential operators Dz and Dv which stand for d/dx and d/dy re-

spectively, we find :

(4) DyJ~\PdQ/dy) = DyJ-\zQdP/dy) and
(5) Dx!-1DvJ-1(PdQ/dx) = Dj-1DvJ-1(zQdP/dx).

We apply Leibnitz' rule of differentiation to (4) and (5) and express the derivatives

in terms of the coefficients:

d')       q(i,i) = pair,

2(i,J+D •L^+1)
V-i

(2')

(3')

J

■Q(1,J + 1 - L)P(1,L + 1))/p(1, 1)

(J = 1,2, ...,N- l),

Q(I + 1, J) = (sum 1 + sum 2)/P(l,l)

(/ = 1,2, ■■■ ,N - 1,J = 1,2, ••■ ,N),

suml = zP(I + l,l)Q(l,J)

+ 12 (zP(I +l,L+ 1)Q(1,J - L)
L-l

-P(1,L+ 1)Q(I+ \,J - L)),
i-i j-\

sum "2 = £ EL(g+r1)--Q(I-L+1,J-K)P(L + 1,K+1).
L-l JC-0 1

The formulas (1 ) and (2 ) serve as the algorithms for finding the coefficients of

the power of a series in one variable.

B. If
(1) Q(x, y) = exp(P(x, y)) then

(2) dQ/dy = QdP/dy and
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(3) D/~ldQ/dy = DvJ-\QdP/dy), J'- 1, • • • , N - 1,
(4) Dj-'D/^dQ/dx = Dx'~1DvJ-1(QdP/dx), I - 1, • • • , AT - 1;/ - 1, • • • ,N

In terms of the coefficients these equations become:

(l')Q(l,l) =exp(P(l,l)),
(2') Q(l, J + 1)  =  (l/./)£í-o (L + 1)P(1, L + 2)Q(1, J - L),J =

1, • • • , N - 1,

,„,,       Q(7 + 1, J)   = (1/7)    Z    i:    (K + 1)P(X + 2, L + 1)
\0   ) K-0      L-0

■Q(I - K,J - L),       I = 1, • • • , N - 1; J = 1, • • • , AT.

C. If
(1) Q(x, 2/) = log(P(x, 2/)) then

(2) dQ/dy = (dP/dy)/P and
(3) DvJ-\PdQ/dy) = D,J-ldP/dy,

(4) Dx'-1DyJ-1(PdQ/dx) = Dj-'Dy^dP/dx.

Again, using Liebnitz' rule of differentiation and rearranging terms, we find that

the formulas for the coefficients are:

(l') <2(i,i) =log(P(i, 1)),
(2') Q(l, 7 + 1) = (P(l,.7 + 1) - (1/J)12Jk~=\ (J - K)Q(l, J - K + I)-

P(l,K + 1))/P(1, 1),.7 = 1, ■•■ , AT - 1,
/-]

Q(I + 1, /) = (P(/ + 1, /) -   C ^(1, ¿ + 1)QC + 1, / - L)
L = l

(3')        - (1/DEE (/ - K)P(K + 1.L+ l)Q(I -K+l,J- L))/P(l, 1)
K=l L=0

I = 1, • •■ ,N - 1; J = 1, ••• ,2V.

D. The sine and cosine of a series are found by: If

(1) Q(x, y) = sin(P(x, y)), R(x, y) = cos(P(x, y)) then

(2) dQ/dy = RdP/dy, dR/dy = -QdP/dy and
(3) Dy'-'dQ/dy = Dy'-\RdP/dy), Dy'-'dR/dy = Dv'~\-QdP/dy),
(4) D/^Dj-'dQ/dx = DxJ-1DvI'\RdP/dx), D/^Dy'-'dR/dx = D/-lDvr~l

(-QdP/dx)
or, in terms of the coefficients we find:

(1') Q(l, 1)  = sin(P(l, 1)), fl(l, 1) = cos(P(l, 1)),

Q(l, 7 + 1) = (1/7)¿ (I - K)R(l, K + 1)P(1, I - K+ 1),
K-0

(2')    R(l, 7 + 1) = -(l/7)¿ (7 - K)Q(l, K + 1)P(1, 7 - K + 1),
/c=o

7 = 1, ■■■ ,N- 1,

Q(.7 + 1, 7) = (1/7)¿ £ (J - L)P(J - L + 1, 7 - L)
;.—o K—o

/?(/, + 1, K + l),
(o  J

P(J + 1,7) =  -(l//)¿ ¿(J - L)P(J - L + 1, 7 - L)
/.=o /c=o

■Q(L + 1, K + 1),      ./ = 1, • ■ ■ , N - 1; 7 = 1, • • • , AT.
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The following formulas for a function of a function depend upon the above

methods for the evaluation of their coefficients. These algorithms are for series in one

variable.

E. The representation of the Bessel Function of order zero can be calculated

directly, even though the argument is a polynomial:

Q(x) = Jo(P(x)) SÉ £ (-(P/2)2)7(K!)2.
K-0

Nesting is used to form the sum. The indicated square is formed using the algo-

rithms A. P is of degree N — 1. It should be noted that the coefficients Q(I) are

obtained exactly only if P(l) = 0.

F. The arctangent, arcsine, and arccosine of a series are found directly from their

classical definitions:

Q(x) = tan-ÍPXx)) = / ^| dx, Q(l) = tan^PU)),

<2(x) = sin-i(P(x)) = / ^fi^pt) dx, Q(l) - sin-^Pd)),

Q(x) = cos-1(P(x)) = j J^^pt) dx, Q(l) = cob_1(P(1)).

These expressions are found by using the power, division or multiplication, differ-

entiation and integration formulas.

G. The formulas for the Chebyshev, Legendre, Hermite and Laguerre poly-

nomials as functions of a function are derived from their generating functions (see

Courant and Hubert [2]) :

If Q(x) = Tjy(P(x)) where 7V is the Chebyshev polynomial of degree N, then

T¡f(P) is the coefficient of y" in the expansion of (1 — .2by2)/(\ — Py + .2oy2),

P is a polynomial in one variable. The division algorithm handles this expression

easily.

IfQ(x) = Lfr(P(x)) where LN is the Legendre polynomial of degree N, then

Ly(P) is the coefficient of y" in the expansion of (1 — 2Py + y2)"112. The formulas

A serve to carry out the indicated square root.

If Q(x) = HIi(P(x)) where 77^ is the Hermite polynomial of degree N, then

HN(P) is the coefficient of //TV! in exp(-y2 + 2Py).

Similarly the Laguerre polynomial La^P) is found from the expansion of

exp(— Py/(\ — 2/))/(l ~ 2/); it is the coefficient of y"'/N\.

The Jacobi polynomial can be handled in the same manner.

The above formulas indicate the versatility of the methods. Not only is it possi-

ble to perform algebraic operations on polynomials, but also the series representation

of many of the elementary functions can easily be found. If the above formulas are

used to form R = P(Q) when Q is just the variable x, then the classical expressions

result. The formula for the Chebyshev polynomials of x yielded Ta, T^ , • ■ • , Ta in

about 1 minute on the CDC 1604. These routines, in general, were found to be very

fast in dealing with compound functions of one variable.

Power series methods are well suited for initial value problems of ordinary and

partial differential equations. The Cauchy-Kowalewsky theorem provides the exist-

ence of and method of finding the solution; it is a power series solution.
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These methods are also useful for solving second order nonlinear boundary

value problems of ordinary differential equations. An often used approach to the

nonlinear boundary value problem is to solve an initial value problem which satis-

fies the same differential equation. The initial value of the first derivative of the

solution to the initial value problem is varied until the solution passes through the

prescribed endpoint of the boundary value problem. That is, if we want to solve:

d2P/dx2 = f(x, P, P'), P(xo) = Po, P(xi) = Pi, P' = dP/dx, then we would

guess P'(xo) and solve the initial value problem: d2Pl/dx2 = f(x, P\ P*'), P'(xo) =

Po, P* (xo) — 2/'- Pl represents the solution corresponding to the ith guess, y', of

the initial data P'(x0). The successive guesses y are chosen by interpolation so that

Limit,-,«, P\xi) = Pi. The disadvantage of this technique is that the solution

must be recalculated after each interpolation and the sequence P'(xi) may con-

verge slowly, if at all, to Pi.

The following alternative solution is proposed. Consider the following system:

dP/dx = Q(x, y), P(xo,y) = Po,

dQ/dx = f(x, P(x, y), Q(x, y)),       Q(x0, y) = y.

The truncated solution P(x, y) = £<L0 £f=o Va^v' can De evaluated at Xi

which gives a polynomial in y:

N       N

P(xi ,y) = £ £ Pijxiy1 = Pi.
•-0 j-0

The zeroes, 2/*, of this equation provide the appropriate initial values of the deriva-

tive P'(xo) = 2/* such that £f=o £yU Pnxiy\ = Pi and P(x,yk) satisfies the

original boundary value problem.

An important drawback is that series solutions to differential equations may

converge in too small a region. M. D. Van Dyke [3] discusses why some attempts

with power series solutions of supersonic flows involving shock waves have failed.

The first complete solution of one of these problems was presented by G. Lewis

[4]. He solved the problem of supersonic flow past a blunt body with axial symmetry.

The shape of the shock wave is assumed and taken as the initial line. The condi-

tions ahead of the shock are also assumed and the Rankine-Hugoniot conditions

provide the initial conditions. Thus the problem is expressed as a Cauchy problem.

However, as M. D. Van Dyke points out, the solution does not converge up to the

body because of a line of singularities, upstream from the shock, which is closer to

the initial fine than is the body. The problem is expressed as 4 nonlinear partial

differential equations in 2 variables.

G. Lewis has developed and proved the convergence of two methods of analytic

continuation which he used to extend the solution up to the body. One method is

simply a reexpansion of the series solution about another point with some extra

truncation of the new series. The other method of continuation, which is more

accurate, takes advantage of the flow equations. The initial series are calculated at,

say, po on the shock and are found to converge in a region including the point p\ .

From the differential equations new series are computed about pi, using the values

1 Another solution of this problem was given earlier without proof by A. Van Tuyl [6].
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at pi of the original series for the initial data. G. Lewis calculated the solution on an

IBM 704 which is an 8-place machine. He used unnormalized double precision

arithmetic and obtained a solution with 8-place accuracy.

The author and Lewis, independently, have recalculated the solution using a

bilinear mapping to map the line of singularities further away from the body. This

allowed the body to be reached without the need of analytic continuation. The

author's calculations were carried out in single precision (10 places) on a CDC 1604.

The machine has built-in rounding operations. The location of the body agreed to

7 places with the original calculations of G. Lewis, obtained by analytic continua-

tion. Consistency checks for the solution obtained by mapping indicated full 10-

place accuracy all the way up to the body. The bilinear mapping, used by the

author, sent the origin (on the shock) into the origin and a point near the body

into itself. The real line was mapped onto itself, and a parameter was used to maxi-

mize the accuracy. Accuracy was determined by the 2 consistency checks of the

problem :

Bernoulli's Law:     2yp[(y — l)p + u  + v2 = constant   and

the gas law: p = A(S)py,

A(S) is constant along a streamline, y is the gas constant, and »S is the entropy.

These equations were available as consistency checks since they were not used in

the calculation of the flow.

The calculation of the series through degree 24 took 100-135 seconds.

These methods were, also used by the author [5] to calculate supersonic flows

past conical shocks. For this initial value problem there are 5 nonlinear partial dif-

ferential equations in 2 variables. The calculation was performed on an IBM 7090

using 8-place single precision significance arithmetic. 7- to 8-place accuracy was

obtained for the flow where the shock was taken as a right circular cone. The

general flow, where the cross-section of the shock was taken to be an ellipse, involves

a singularity. Outside a neighborhood of the singularity 5- to 7-place accuracy

was achieved. The expansions for the flow variables, pressure, density, and velocity

were calculated on a constant spherical surface between the shock and the body

along several radial lines running from the shock to the center of the ellipse. The

maximum number of analytic continuations necessary to reach the body along any

radial line was three. Each continuation resulted in the loss of 1 decimal place of

accuracy. By calculating up to the singularity from different directions it was found

that the singularity behaves like a branch point. Calculations from separate direc-

tions gave different results in a neighborhood of the singularity, although they

agreed in overlapping regions away from the singularity.

From several points of view power series have shown themselves useful. They

are not only a computational tool with a high degree of accuracy, but they also pro-

vide an efficient method for generating polynomial expressions which are important

in themselves, for example the Chebyshev polynomials. By mapping or analytic

continuation, power series solutions may be extended into the large. Stability cri-

teria do not affect power series solutions. The techniques are valid even when the

equations change type, i.e., from elliptic to hyperbolic as in the case of flow past a
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blunt body. A power series form of solution is much more compact than a finite

difference solution, and it allows study of the analytic behavior of the solution.
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