
Solutions of Differential Equations
by Evaluations of Functions

By E. Baylis Shanks

1. Introduction. The fourth-order formula, known as the Runge-Kutta formula,

has been used extensively to obtain approximate solutions of differential equations

of first, second, and higher orders. The original idea for such formulas seems to be

due to C. Runge [5]. This idea was used more effectively for first-order equations

by W. Kutta [3] and for second-order equations by E. J. Nystrom [4]. The extension

to order n was made by R. Zurmuhl [6].

The Runge-Kutta fourth-order formula requires only four evaluations of the

function/(x, y) involved in the first-order equation y = f(x, y). On the other hand,

known formulas of the fifth order, such as the Kutta-Nystrom formula, require six

evaluations of the function f(x, y). The sixth-order formulas of A. Huta ([1] and

[2]) are not known as well and have the disadvantage of requiring eight evaluations

of/(x, y). No formulas of higher order except those developed in this investigation

seem to exist in the literature. These formulas are inherently stable, accurate, and

"self-starting". Therefore, they are extremely useful either alone or in combination

with efficient "continuing" procedures.

Sufficient conditions that a given formula of arbitrary order m be valid are

developed in this paper. Necessary and sufficient conditions are given for the

validity of a formula of order seven or less. These conditions make it possible to

develop more efficient formulas requiring a fewer number of evaluations for orders

five and six. Formulas of higher order, including the seventh and eighth orders, are

also developed.

2. Preliminary Considerations. The differential equations considered are of the

form y = /(x, y) (systems of higher orders may be reduced to systems of the first

order). The function / is assumed to be analytic in a sufficiently large neighborhood

of the initial point (x0, y<¡). Let/, be defined by the equation

fi = f I xo + aih, y0 + afi Ç bafA .

where/o = f(x0, ya) and i = 1, 2, • • • , n. Consider the finite series

n

Y = y0 + Ä^Cif. .
t=0

The a¿, b»y , c¿ are parameters to be determined so that Y and the solution y(xo -+- h)

of the given differential equation will agree to some desired degree of accuracy.

Theorem 1. A necessary and sufficient condition that the Taylor series for Y and

the Taylor series for the solution y(x0 + h) of the given differential equation agree

through terms in hm is that

(D (/(*-1,)o =  fc¿c,(/,a-1))„
<=o
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for k = 1, 2, • • • , m, where the symbol f is used to denote the kth derivative of the

function f(xn + h, y(xB +-h)).

The proof is immediate upon comparison of the general terms of the two Taylor

series.

In particular, for k = 1, the condition is

n

/o =   S c¿/o
¿=0

and, for k = 2, the condition is

(/')o = 2 ¿ c,(//)„ = 2 ¿ ciai [(/)o + /o(/,)o (Z 6* - l)l.
i=o »=o |_ \y=o /J

Hence, since / is an arbitrary analytic function, the validity of the conditions for

m ^ 2 require

n t—1 n

(2) 1   =   Z C,  =   X &Ü =  2Z) CyjOy, ,
t'=0 y=0 J 1=1

where i = 1, 2, • • • , n in 6,-y. It is easily verified that the condition for k = 3

leads to the requirements

n 7» J2~I

(3) 1 = 3Ecj,«j, = 6Scy2ay¡,X)6J,JlaJl .
31=1 Í2=l il-1

At this point, it is convenient to introduce a "summation convention". It is

easily established by an induction that, in each instance, the indices for each &,, are

distinct and the second index j is summed for 1, 2, • • -, i — 1, that there are no

other changes of indices, and that each 6,y is followed immediately by a/ for some

positive integer k. Hence, without confusion, the summation signs and indices may

be omitted, Sy=l &»yOy then being denoted by ba , as illustrated next for fc = 2

and k = 3.

k = 2:    1 = 2ca,

k = 3:    1 = 3ca     1 = Qcaba.

In order to further simplify the notation, let c¿° = c, and

/ .  Ci      aiOij      Cj
i-J+l

for j = 1, 2, • • • , n — k and k — 1, 2, ■ • • , m — 2. When convenient, c,0), c, ",

c¿<2), • • ■ will be denoted by c<, c/, d , • • • respectively.

By straightforward but tedious calculations, the formulas for k = 4, £>, 6, ■ • •

may be obtained. This was done for fc ̂  6 by Huta [1]. The necessary and sufficient

conditions for fc ^ 7 have been derived by the author and will be given below. The

parameters c0 and bm are determined by two of the equations given in (2) above,

which will not be repeated below.

fc = 2:    1 = 2ca,

fc = 3:    1 = 3ca2    1 = 6c'a,
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fc = 4:    1 = 4ca3    1 = 12c'a2    1 = 8ca%a   1 = 24c"o,

fc = 5:    l = 5ca4    1 = 20c'a3    1 = I5caba2

1 = 60cV    1 = I0ca3ba    1 = 20ca2(ba)(6a)

7 = 120(ca 6a6a + c a ba)    1 = 120c a,

k = 6:    1 = 6ca6    1 = 30c'a4    1 = 24caV

1 = 120c V    1 = 12ca4fc-a    1 = 24ca\ba)(ba)

1 = 18ca3ba2    1 = 48 ca2ba2ba

13 = 720ca2(6a)(6a&a) + 360c'a2(6a)(ba)

2 = 45 (cubaba + ca%a)    1 = 360c'"a2

1 = 36ca2(ba)(6a2)    1 = 40(ca26aöa2 + ca2ba2)

1 = 720c"'a    1' = 60(ca2bababa + ca2baba + c"a2ba),

fc = 7:    1 = 7ca6    1 = 42cV    1 = 35ca26a4

1 = 210c" a4    1 = 14ca56a    1 = 21ca46a2

1 = 28(ca baba + caba)    1 = 28ca (ba)(ba)

1 = 28ca36a    9 = 280 (ca%a2ba + ca2ba3ba)

5 = 252(ca3baba2 + c'a'ba2)    1 = 42ca3(6a)(ba2)

1 = 105ca26a26a2   31 = 2520 (ca%ababa + c'a3baba + c"a%a)

5 = 336ca3(6a)(6a6a) + 168c'a3(6a)(6a)

19 = 1680 (caba2baba + cababa2ba + c'a2ba%a

11 = 840 (ca2babas + c'a2ba)

1 = 80ca2(6a)(6a26a) + 40ca26a2(5a)(6a)

1 = 56ca\ba)(ba)(ba)

1 = 168(cabababa  + c a baba2 + c aba2)

1 = 63ca2(oa2)(ba2)

1 = 280 ( ca babababa + ca2bababa + c'a2baba + c'"a2ba)

1 = 56[ca2(6a)(6a6a2) + ca2(ba2)(baba) + ca2(ba)(ba2)]

1 = 56ca2(oa)(6a8)    1 = 840c"V    1 = 2520c""a2

1 = 5040c'""a

19 = \2W[2ca(ba)(bababa) + ca2(baba)2 + 2c a2(ba) (baba) + c"a2(ba)\

This list could be extended, although the computation would be laborious.

Instead, sufficient conditions will be developed which are general and relatively easy

to express in a list of formulas.



24 E.   BAYLIS   SHANKS

3. Sufficient Conditions. Let

&i+'f
fon = /(x, y),       fi, = j-~,

ox%&y

where x is a linear function of h and y is an analytic function of h. As before, as-

sume that/(x, y) is an arbitrary analytic function. Also, let

(4) (n,j) = ±(l)x"'-ky'kf
fc / jn-k.j+k ■

The following theorem is well known and easy to prove.

Theorem 2. // primes denote differentiation with respect to h and the notation in

(4) is used, then

(n,j)' = (n + l,j) + ny"(n - l,j + 1).

The following theorem will be proved.

Theorem Z. If n  =   it + »» +   • • •   + 4 , fc = ¿i + 24 + • • • + kik, and
C(4, 4 , ■ ■ ■ , ik) is a constant depending upon i\, 4, ■ ■ ■ , ik, then fk) can be ex-

pressed in the following form

fk) = £ C(4 , 4 , ■ ■ ■ , ik)ynit ■ ■ ■ (yw)ik(k , n).

Proof. The proof is made by use of complete induction. For fc = 1, / = (1,0),

C(l) = 1, and n = 0 so that the theorem is true in this case.

Assume the theorem is true for fc. Then, after differentiation of flh\ the terms of

fk+i) can be classified into the following types.

ifi(M ,**,•••, i«)y"i% ■ ■ ■ (^-1Vy-H2/°Yy-1(y0+1)ry+,+1 • ■ • (2/wr*(o,

C{k, ii, ■ •■ , **)/*'* • • • (yk)<k[(h + 1,») + iiy"(ii - l, n + 1)1,

where ik+i = 0 when j = fc in the first type. It is readily verified that fc + 1 =

h + 2^' +■■•+ (fc + l)¿+i for each type while » = it + • • • + ik+i for the

first type and n + 1 = it + • • • + ik+i for the second type. Hence the theorem

is true for fc + 1 and the induction is complete.

The results established by Theorems 2 and 3 may be applied to the function

f(x, y), where y = f(x, y), x = x0 + h, y = y(x0 + h), and y0 = y(x0) or to

the function /< = /(x¿, y¿), where Y = y0 + /iE"=«cí/¿ > x* = x<> + a<h » and

y i = 2/0 + <X</l22y=0 6¿y/y .
Theorem 4. for the function f(x, y),fk) = ~£tirtikl, where vtw is a product of

an integer and factors of the type (n,j) for k ^ 1.

The proof is immediate, using complete induction, since y = / = (1, 0) and

(n,j)' - («+ l,i) +n(l,0)(n- 1,¿+ 1).
The next theorem gives an expression for f¡k) at the initial point (xa, ya). In

order to state the theorem more concisely, let us define Q,i' = a¡ and, inductively,

(5) Ql? = at* (ft 2a, g bMl)        (Û ka< g btAfc") ,
\r-l 3-1 / \r=I ;-l /

where the induction is on fc, fc = i\ + 24 + • • ■ + fc4 , and the subscripts Í, ¿r are

used simply to number the distinct terms defined for each fixed fc, the order of the



SOLUTIONS  OF  DIFFERENTIAL  EQUATIONS 25

numbering being immaterial. For example, when fc = 2 the possible values for ix

and 4 are 4 = 2,4 = 0 or ¿i = 0, 4 = 1 so that t = 1, 2 and we may write

Qlî1 = at,       Q[â] = 2a/¿ My.
j-i

Theorem 5. If fk) = £< irt[k\ where irtw is a product of an integer and factors

of the type (n, j) and k 2= 1, then at (x0, yo)

/* -    Z^ Wit    T|

/or a suitable numbering of the Qjt.

Proof. The theorem is proved if it is shown that the quotient of corresponding

typical terms of /,■ *' and fk) is Q'*1 for each value of the index /. The proof is made

by use of complete induction on fc.

For fc = 1, /' = (1, 0) and (//)0 = oy(l, 0) so that QJÎ1 = a¡ and 4 = 1,
which establishes the theorem in this case.

Assume the theorem is true for 1, 2, • • • , fc — 1 and consider fk) and /y *\ It

follows from Theorem 3 that

(6) fw = £ C(4, 4, • •■ , ik)y"h ■ ■ ■ (yim)ik(ii, n),

(7) ft" - E C(4 , 4 , • • • , 4)2//'*'2 • • • (*<M)*<* , n),-.

It is also true by Theorem 4 that

ifr-l) v^

i

and at (x0, yo)

ytr) = roiYl biS]_
i

The latter equation is equivalent to

(9) yt{r) = Çrm,Ç6<jgirI]]Tt"-11.

A typical term of fik) is obtained by fixing 4,4, • • • , 4 in equation (6) and then

fixing t in equation (8) for each value of r represented in the term from equation (6).

The corresponding typical term of /, *} is obtained by fixing the indices in the same

way in equations (7) and (9). Since (ii, n)¿ = a/'(¿i, n), it follows that the quo-

tient of corresponding typical terms from /¿ w and fk) is precisely Qu] as given in

the theorem. Hence the theorem is true.

A necessary and sufficient condition that the Taylor series for Y and y(xB + h)

agree through terms in hm (m ^ 2) is that

n i—\

1   =    £cy, 1   =    £o,y
y=o y-o

for i =  1, 2, ■ • • , n and

ZWk] = (fc + DEc-ZQÍÍV41
t i t

for fc = 1, 2, ■ • • , m — 1. This follows immediately from Theorems 1 and 5 and is

incorporated in the following theorem.

(8) „«./->« ZWr~n
t

^r) = ro<£6i/EQ/r1V'-1'.
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Theorem 6. A necessary and sufficient condition that the Taylor series for Y and

the Taylor series for y(x0 + h) agree through terms in hm (m ^ 2) is that

Ç[i- (HDÇc,^1],/" =o

for k = 1, 2, • • -, m — 1 and

n t—1

1   =   12 Cy  =   £ 6,y
y=o y-o

/or z = 1, 2, • • • , n.

Sufficient conditions are implied by Theorem 6 and given in the next theorem.

Theorem 7. Sufficient conditions for the Taylor series for Y and the Taylor series

for y(x0 + h) to agree through terms in hm (m ^ 2) are

n i—l

1   =   12 Cy  =   £ 6„
y=o y=o

for i = 1, 2, • • • , n and

(10) 1 = (fc + l)¿C<Q«
t=i

/or fc = 1, 2, • • • , m — 1 and t ^ 1.
The equations (10) state the conditions to be satisfied for formulas of different

orders. These equations are completely determined when the Q\k] are known. Due

to this importance of these quantities, we shall elaborate further on their formation.

Observe that, in (5), o¿ is multiplied by 1, 2a,6,y is multiplied and summed on

j by a term Q]\\ , • ■ • , and fco<6,-y is multiplied and summed on j by a term Q[/t~l>.

Hence the equation (5) is a rule that states that a term Q\k] is made by forming a

product consisting of 4 factors of the type mentioned first in the preceding sentence,

4 factors of the type mentioned second in the preceding sentence, • • • , and 4 factors

of the type mentioned last in the preceding sentence, where 4 + 24 + ■ • • + fc4 =

fc. Since Qu] = a¿ and t = 1 in this case, the succeeding Qu] may be formed in-

ductively.

For example, when fc = 3 the possible values of 4 , 4 , 4 are 4 = 3, 4 = 4 =

0; 4 = 1, 4 = 1, 4 = 0; 4 = 4 = 0, 4 = 1. There are two terms for 4 = 1 since

Qy2J is involved. Hence the rule leads to the following four terms

Q\V   = at, QÎ-21   =  0¿(2a¿£ OiyOy)   =  2a/ 12 6,-yOy ,

¿-i y-i
Q\V = Sa^bija,2,       Qu] = 3a,-£ 6<y2ayX bj*°* •

í—i *=i

Note that i is a free index, which is to be summed when Qu] is inserted in equation

(10), while t or tr number the terms of a given type.

These results can be expressed in the "summation convention" notation. To

illustrate this fact and to recapitulate previous results, a list is given below (in the

summation convention) of the Q[k] for fc = 1, 2, 3, 4. Formation of the list is made

easier by grouping terms of the type pabQ[p~1] separately as shown.
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fc = 1

fc = 2

fc = 3

fc = 4

a 2aba

a    2a ba 3aba    Gababa

a    2a ba   Sa ba 4aba    8aba ba

6a baba   4a (ba)(ba) \2ababa    24abababa

This list can be extended by the rule with relative ease.

It is possible to state a rule so that the equations for a given fc can be written

without reference to the equations for smaller integers. Such a rule follows essen-

tially from the following facts, which are consequences of equations (5) and (10) :

(1) Q[k] is a product of factors, each factor of which consists of a sequence of an

integer, a's, and ba^'s, (2) in each factor of Q[k], at least one a immediately precedes

each bu and at least one a immediately follows each 6,-y, (3) in each factor of Q[k],

the integer p immediately precedes bak if and only if p — 1 is the number of a's

that follow and are connected by summation to the given o;y, and (4) Q1*1 contains

exactly the number fc of a's. However, such a rule is not of much advantage since

all equations for fc = 1, 2, ■ • • , m — 1 are part of the sufficient conditions to be

satisfied in order to obtain a valid formula of order m.

To illustrate the remarks just made, consider the case when fc = 5. First, one

would form a sequence of a's and 6a*'s according to the requirements in (1), (2),

and (4). One such sequence would be a2ba2ba so that the term under consideration

would be ca ba ba. According to the requirement (3), integers should appear in the

final expression, giving (6) ca2 (4) ba2 (2) ba. Then, according to equation (10),

the final equation of condition would be

1 = 4&ca2ba2ba.

It should be observed that the values of fc in the latter discussion do not corre-

spond to those in Section 2.

4. Specification of a Formula. In order to specify a given formula of order m

with n + 1 evaluations, denoted (m, n + 1), one may detach the coefficients as

follows:

Formula (m, n + 1)

ai        aibio

Oï       a¿>m + a2&2i

a„       anbn0 + a„o„i +■•••+ anb„,„_;,

Co + Ci + • • • + c„ .

This array specifies the formula

n

Y = y0 + hl2cif%,
i = 0
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where

/o = f(x„, yo)

/i = f(x0 + ají, y0 + aihbwfo)

(■
/í = / ( xo + ají, yo + ají 12 buf)

y=o       /

/» = / í x0 + Onh, yo + ají 12 b„y/y j .

Such arrays will be used below to specify various formulas.

5. General Formulas for Orders Below 5. In these cases, it is possible to give

formulas with n equal to its minimum value m — 1.

The formulas for m ^ 3 are easy to derive and are simply listed next.

m = 0

m = 1

m = 2

J_
2d

Y = 2/o

Y = yo + /i/o

ai   ai

[(2a, - 1) + 1],

where

b21

Cl

(oî — ai)

ai(2 - 3ai) '

2 - 3o2

ôa^ai — a-i)

2 J_
3 4c

ill + (3 - 6c) + 6c],

II.    ai    ai

Oï    a2(b2o + 621)

(c0 + ci + Ci),

620 =1 — 021,

2 - 3ai
c-i

6a2(a2 — ai) '
Co =  1 — Ci — Ct .

The last three formulas have been given with detached coefficients as explained

previously.

For order 4 with n = 3, let

5,
i-1

12 bijOj — Ja,
i-i

for i = 1, 2, 3 where b\ = — ai/2. Then three of the seven conditions may be written

cab = 0, cab = 0, c 'ab = 0.
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As vectors in three space, c, ca, and c are orthogonal to the nonzero vector ab and

hence are linearly dependent. Thus, for i = 1, 2, 3

Ací + Bciüi + Cci  = 0

for some nonzero vector (A, B, C). Multiplying and summing in turn by a, and

a i, we get

\A + IB + W - 0,

\A + \B + &C = 0.

These equations imply, for each i, Ci — Cíü, = c, and a3 = 1 since cs ^ 0. With

this information, it is not difficult to derive the complete solution for order 4.

First, a2 9e 1. Otherwise, c2 = 0 and Ci = c2 a¡¡62i = 0, but this contradicts the

condition 1 = 24ci ai. This leaves three cases, which are discussed below.

Case 1. ai = a2. Then 1 = 6(d + c2 )oi and 1 = 12(ci' + c2')at, which im-

plies ai = o2 = e and Ci  + c2   = 5. Let c2 = 2c. Then the formula for this case is

1 1
2 2

1    [0 + (1 - 6c) + 6c]

Ml + (4 - 12c) + 12c + 1J.

This formula for 1 = 6c is the famous Runge-Kutta Fourth Order Formula.

Case 2. ai = 1. Then ci = 0, 6c202 = 1, and \2ciat = 1, which implies that

a2 = è and c/ == |. Then c2 = c2'/(l — as) "= f, so that Ci + c% = J — c202 =

I — I = |. Let f¡ = c. Then the formula for this case is

1    1

I    K3 + 1)

1    ¿t(12c-3) + (-1) +41

i[l + (1 - 6c) + 4 + 6c].

Case 3. ai, a2, 1 are distinct. Then

m _      1 > 1 — 2oí / 1 — 2ai

24ai ' 12ai(ai — a2) ' 12o2(a2 — at) "

The formula for this case is

a\ a\

a2 aü(b2o + 62i)

1 (630 + bzi + 632)

(Co + Ci + d + d),
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where

, Oí — a, , 3oi — 4ai  — 02
°21   =  ô—71-FT-T i °20   =

i>31  =

&32   =

2ai(l - 2ai) ' 2ai(l - 2at)    '

(1 — ai) (2 — ai — 5a2 + 4o22)

2ai(ai — Ou) (3 — 4ai — 4a-2 + 6aia2) '

(1 - ai)(l -0,)(1 - 2a0

ch(oi — ai) (3 — 4ai — 4a2 + 6aia2) '

bio  —   1   —  O31  —  032 ,

2oi- 1 2ai - 1
cl = TÏT-7-w-^ > c2 =

12ai(ai — a2)(ai — 1) ' 12a2(a2 — ai)(a2 — 1)

3 — 4ai — 4o2 + 6010« ,
C3 =   —TK-,-rvT-rr—  , C0 =   1   — Ci — C2 — Cs .

12(ai — l)(a2 — 1)

6. Inconsistency of Conditions when m = n + 1 = 5. It will now be shown that

the fifteen conditions for order 5 are inconsistent when n = 4, the minimum value.

Let

«-i
bi = 12 bnaj — §a,

>=i

for i = 1, 2, 3, 4 where 5i = —ai/2. Then six of the conditions may be written

cab = ca25 = ca% = cab = c ab = (ca% + c'a2)b = 0.

In four space, the vectors c, ca, ca2, c , c , and 12?=j+i c<a, i>,y + cy'a,- for j — 1,

2, 3, 4 are orthogonal to the nonzero vector ab. Since c4 = ct = cs = 0 by con-

vention,

¿Cy + Be/ + Cc" = 0

implies A = B = C = 0. Hence c, c , and c are independent vectors, spanning

the three space orthogonal to the space spanned by the vector ab. By a straight-

forward calculation, we get

ca = a4c + (7 — 8a4)c' — 20(1 — a^c",

ca2 = ate + (6 - 8a„2)c' - 2(9 - 10a42)c",

n

12 Cta,2bsy + Cy ay  =   2Cy'  —  3Cy"
i=y+i

for j = 1, 2, 3, 4. From the last of these equations c4a42643 + c3 as = 2c3, which,

since c4a4o43 = c3 j¿ 0, is equivalent to a3 + a4 = 2. From the first two equations

c3(a3 — at) = (7 — 8a4)c3',

C3(a32 — at) = (6 — 8at)c3',

from which it follows that

(a3 + a4)(7 - 8a4)c3' = (6 - 8a42)c3'.
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Since c3 t¿ 0 and a3 -\- at = 2, it follows that a4 = 1 and hence a3 = 1 also. Since

cs — c3a3 = c3, we get c8' = 0, a contradiction.

This contradiction establishes the claim that all of the conditions cannot be

satisfied when m = n + 1 =5.

7. A Change in Viewpoint. One procedure, which was adopted by Kutta, is to

increase n from 4 to 5. This introduces additional parameters, which enabled Kutta

to formulate a formula of the fifth order with six evaluations. His formula contained

an error, which was later corrected by Nystrom. However, it is not necessary to

increase n from 4 to 5 if we adopt a new viewpoint.

In the general case, let us require only that the conditions be approximately

satisfied. In other words, if a condition is written in the form F = 0, then the new

requirement is to be that F = e for a sufficiently small e. In particular, for a given

order m, the possibility will be examined that all conditions whose orders are below

m are satisfied precisely, while some or all of order m are approximately satisfied.

8. Formulas with Five Evaluations. For m = 5, let a4 = 1, c¿ — dOi = c/ for

i = 1, 2, 3, 4, and bi = 0 for i = 2, 3, 4. Let it be required that the conditions

whose orders are below five be satisfied. Then 1 = 6c a = 6ca6 = 3ca2 — 3ciai2, so

that Ci = 0 since 1 = 3ca2. Thus C\ = 0 and the new requirements reduce to the

following

1 = 6c'a,        1 = 12c'a2,        1 - 20c'a3   = e,

1 = 2ca, 1 = 24c"a,        1 - 60c"a2 = e",

1 - 120c'"a = e",

where e , e , and e   are to be taken sufficiently small. Since Ci  = 0,

(11) 3e' = 3 - 5a2 - So, + 10a2a3

and, since a2 = 2o2iai = 2ci ai/c2 02, it follows that

(12) ai(2 — 502) = 2a2e" + 2e'"(ai — 02).

To recapitulate, there are six parameters e , e , e , ai ,a2 ,a3 and five requirements,

namely, e , e , e are to be taken sufficiently small while (11) and (12) are to hold.

When these requirements are met, a valid formula is obtained as given by the array

below.

ai   ai

a2    a2(620 + b2i)

a3    03(630 + 631 + O32)

1     (640 + 041 + o42 + b43)

(Co + Ci + c2 + c3 + c4),

where

i ¿"ah, = cf(k+l)
i'-y+i
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forj = 1, 2, • • • , 3 - fc and fc = 0, 1, 2;

6i0 = 1 — 6,i — • • • — 6,,i_i

for i = 2, 3, 4; and

,„ _ 1 — e'" ,, _ —2e   + 2 — 5oü ,, _ —2e" + 2 — öttj

Cl     "   120ai   '       Cl 120ai(oi - ad   ' 120o»(a2 - ai)

ci = 0,
,           1 — 2as / 1 — 2o2

C2   = Ts—7-Ñ . c3   =
12a2(a2 — a3) ' 12a3(a3 — a2) '

n 1 - 2a, 1
ci = 0, c2 = .-Vr-. , ct = - — cso-2 - c3a3,

i2a-2(l — Oi)(Oi — a3) 2

-= 1 - 20, =     _
12a3(l — a3)(a3 — a2) '

3e' = 3 — 5(o2 + a3) + 10o2 a3,

Oi(2 — 5a2) = 2a2e" + 2ew(ai — 02),

c', e , e'" chosen sufficiently small.

It is clear that the requirements can be met and that the array defines a four

parameter set of valid formulas, each of which involves only five evaluations of the

function.

According to the traditional viewpoint, all of these formulas would be called

fourth-order formulas since e , e , and e cannot be simultaneously zero. However,

when e , e , and e are chosen sufficiently small, such formulas are, in reality,

fifth-order formulas. This is true because the terms of Y — y containing hb, whose

coefficients are not zero, also contain either e , e , or e   as a factor.

To illustrate these facts, set e = e = 0, e = l/1200n, ai = l/1000n, a2 =x%,

and a3 = f. These values lead to the one parameter set of fifth-order formulas

(provided n is large enough) given in the array below.

(13)

lOOOn    lOOOn

tV TV[(-450rc + 3) +450«]

Î f[(2250n - 9) - 2250n + 15]

1 -A-[(-103500n + 459) + 103500« - 490 + 112]

ttVt (105 + 0 + 500 + 448 + 81).

For the array (13), thirteen of the fifteen conditions are satisfied. The other two

are approximately satisfied as shown below.

1 en "   2 "1 — 60c a       = e ,

1       1 -   2,  2 1 "1 — loca ba   = — %e .

To be more specific, the array (13) gives a fifth-order formula with five evaluations

if we choose 1200n/¡2 > 1 (smaller values of « would suffice).
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9. Efficient Formulas of Various Orders. Using the principles already explained,

we have derived other formulas. To avoid going into détails and to conserve space,

we will simply list a spectrum of such formulas, including formulas of the seventh-

and eighth-orders.

Formula (4-4)

(14)

(16)

i i
TÔ7T      TTT0"

f       ^(-4278 + 4425)

1        ¥7Vt(524746 - 532125 + 16170)

TirèW-179124 + 200000 + 40425 + 8791)

Formula (5-5)

i_       i
'SJSWS     ~5Tro"5

t%        ;rV(-4047 +4050)

(15) 1 |(20241 - 20250 + 15)

1 tM -931041 + 931500 - 490 + 112)

ttVt(105 + 0 + 500 + 448 + 81)

Formula (6-6)

i        i
wo    ïtro

|       £(-29 + 30)

|       M323 - 330 + 10)

fi     Trro-(-510104 + 521640 - 12705 + 1925)

1        ?V(-417923 + 427350 - 10605 + 1309 - 54)

TnfW(198 + 0 + 1225 + 1540 + 810 - 77)

Formula (7-7)

i i
T"9Tf     TS~2~

i       K-15 + 16)

i       TÍí(4867 - 5072 + 298)

(17) 1        TfY(-19995 + 20896 - 1025 + 155)

£       ï<fW( -469805 + 490960 - 22736 + 5580 + 186)

1        5Tnrr(914314 - 955136 + 47983 - 6510 - 558 + 2511)

7^(14 + 0 + 81 + 110 + 0 + 81 + 14)
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Formula (7-9)

(18)

(19)

2       2

I   tV(1 + 3)
i    1(1+0 + 3)

I   *ttt(23 + 0 + 21-8)

t   Tlhr( -4136 + 0 - 13584 + 5264 + 13104)

i    is i« a 2 (105131 + 0 + 302016 - 107744 - 284256 + 1701)

i   TjrrhuA -775229 + 0 - 2770950 + 1735136

+ 2547216 + 81891 + 328536)

1    ïittW(23569 + 0 - 122304 - 20384 + 695520

- 99873 - 466560 + 241920)

tîtïWK 110201 + 0 + 0 + 767936 + 635040 - 59049

- 59049 + 635040 + 110201)

Formula (8-10)
4 4

2T      Tí 7

2
3 5

1
6        TH2

Mi + 3)

AU+ 0 + 3)

1(1+0 + 0 + 3)

fe(13 + 0-27 + 42 + 8)

iW(389 + 0 - 54 + 966 - 824 + 243)

1     îV(-231 + 0 + 81 - 1164 + 656 - 122 + 800)

|     ^(-127 + 0 + 18 - 678 + 456 - 9 + 576 + 4)

1     ^(1481 + 0 - 81 + 7104 - 3376 + 72 - 5040 - 60 + 720)

^(41 + 0 + 0 + 27 + 272 + 27 + 216 + 0 + 216 + 41)

Formula (8-12)
i
0

1   Ad + 3)
i     A(l + 0 + 3)

Ä   ^(29 + 0 + 33-12)

ï     irh(33 + 0 + 0 + 4 + 125)

J     ^(-21 +0 + 0 + 76+ 125 - 162)

(20)    §     ^(-30 + 0 + 0-32 + 125 + 0 + 99)

3     tt2t:(1175 + 0 + 0 - 3456 - 6250 + 8424 + 242 - 27)

f      iflhr(293 + 0 + 0 - 852 - 1375 + 1836 - 118 + 162 + 324)

t     Tir>nr(1303 + 0 + 0 - 4260 - 6875 + 9990 + 1030 + 0 + 0 + 162)

1      4T2-ti(-8595 + 0 + 0 + 30720 + 48750 - 66096 + 378
- 729 - 1944 - 1296 + 3240)

^iö(41 + 0 + 0 + 0 + 0 + 216 + 272 + 27 + 27 + 36+180 + 41)
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Formulas (14), (18), and (20) have the orders indicated in the traditional sense

while formulas (15), (16), (17), and (19) have the orders indicated from the new

viewpoint and only for certain values of h.

10. Comparative Numerical Data. The comparative data given next was pro-

grammed in double precision on the IBM 7072 at Vanderbilt University. The dif-

ferential equations used were chosen to give a spectrum of possible behavior so that

any bias for a particular formula might be minimized. Time is given in minutes.

(1). The equation used was y = y with the initial value (1,0) and the interval

of solution x = 0 to x = 18. The exact solution is y = ex.

Step-size

.04

.06

.09

.12

.15

.18

Runge-Kutta 4-4
Error

.24 102

.12 103

.60 IO3

.18 10"

.44

.89
104
104

Time

.63

.42

.28

.21

.17

.15

Step-size

.04

.06

.09

.12

.15

.18

Formula 4-4
Error

.24 102

.12 103

.60 103

.18 10*

.44 104

.89 104

Time

.63

.42

.28

.22

.17

.15

Step-size

.04

.06

.09

.12

.15

.18

Formula 5-5
Error

.16 10°

.12 101

.90 101

.36 102

.11 103

.27 103

Time

.86

.58

.39

.29

.24

.20

Step-size

.04

.06

.09

.12

.15

.18

Formula 6-6
Error

.94 10~3

.10 10-1

.12 10°

.63 10°

.23 101

.68 101

Time

1.12
.75
.50
.38
.31
.26

Step-size

.04

.06

.09

.12

.15

.18

Formula 7-7
Error

.72 IO"4

.76 10-3

.87 IO"2

.50 IO"1

.19 10°

.59 10°

Time

1.41
.94
.63
.48
.38
.32

Step-size

.04

.06

.09

.12

.15

.18

Formula 7-9
Error

.13 IO"4

.79 10-"

.12 10-2

.88 10-2

.41 10-1

.14 10°

Time

2.08
1.39

.93

.70

.56

.47

Step-size

.04

.06

.09

.12

.15

.18

Formula 8-10
Error

.71 10~5

.59 10-5

.15 IO"4
io-3

59 IO"3
75 IO"2

.11

Time

2A5
1.64
1.09

.82

.66

.55

Step-size

.04

.06

.09

.12

.15

.18

Formula 8-12
Error

.74 IO"5

.43 IO"5

.33 IO"4

.36 IO"3

.21 IO-2

.86 10-*

Time

3.28
2.19
1.46
1.10

.88

.73

The programming is such that time is not saved when entries in the formulas

are zeroes. For example, due to the zeroes in the Runge-Kutta formula, the program

could be designed to reduce the times given above slightly.

A study of the results will show the advantages of the higher order formulas.

For example, the 8-10 formula takes .55 minutes and yields an error .75 IO-2 while
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the Runge-Kutta formula takes .63 minutes and yields an error no better than

.24 IO2.

(2). The equation used was y" = — (xy + y)/(xy)2 with initial value (1, 1,1)

and the interval of solution x = 1 to x = 19. The exact solution is

y = Vl + 2 In x, y  = 1/xy.

Runge-Kutta 4-4

Step-size Error Time
.04 .96 10-5 1.51
.06 .49 IO-4 1.01
.09 .25 IO-3 .68
.12 .79 IO-3 .51
.15 .19 IO-2 .41
.18 .39 IO"2 .35

Step-size
.04
.06
.09
.12
.15
.18

Formula 4-4

Error
.37 IO-5
.19 IO"4
.93 10-4
.29 IO-3
.71 10-'
.15 IO-2

Time
1.52
1.02

.68

.51

.41

.35

Step-size

.04

.06

.09

.12

.15

.18

Formula 5-5
Error

.38 IO"7

.26 IO"«

.16 IO"5

.44 IO-5

.49 IO"5

.14 IO"4

Time

2.04
1.37

.91

.69

.55
.46

Step-size

.04

.06

.09

.12

.15

.18

Formula 6-6
Error

.16 IO"7

.19 IO-6

.29

.23
10"
io-

.12 10-'

.49 IO"3

Time

2.63
1.76
1.17

.88

.71

.59

Step-size

.04

.06

.09

.12

.15

.18

Formula 7-7
Error

.75 IO"9

.47 IO"8

.14 IO"6

.95 IO-6

.36 IO-5

.95 IO"5

Time

3.27
2.18
1.46
1.10

.88

.74

Step-size

.04

.06

.09

.12

.15

.18

Formula 7-
Error

.11

.17

.25

.15

.49

.99

IO"9
IO"8
io-7
IO"6
IO"6
IO"6

Time

4.72
3.15
2.11
1.58
1.27
1.06

Step-size

.04

.06

.09

.12

.15

.18

Formula 8-10
Error

.13 10-'°

.21 IO-9

.32 IO-8
io-7
io-7
io-6

.21

.83
2Í

Time

5.53
3.69
2.46
1.85
1.48
1.24

Step-size

.04

.06

.09

.12

.15

.18

Formula 8-12
Error

.11 io-11

.40 10-10

.11 IO"8

.11 io-7

.62 IO"7

.25 IO"6

Time

7.31
4.88
3.26
2.44
1.96
1.63

(3). The equation used was y   =  —2xy2 with initial value (1,0) and the in-

terval of solution x = 0tox = 18. The exact solution is y = (1 + x )~ .

Runge-Kutta 4-4
Step-size Error Time

.04 .75 10-" .86

.06 .39 IO-10 .58

.09 .20 IO"9 .39

.12 .64 IO-9 .29

.15 .16 10"s .24

.18 .33 IO"8 .20

Step-size

.04

.06

.09

.12

.15

.18

Formula 4-4
Error

.33 IO-11

.16 IO"10

.84 IO"10

.27 IO-9

.64 IO"9

.13 IO"8

Time

1.15
.58
.39
.29
.20
.15
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Step-size

.04

.06

.09

.12

.15

.18

Formula 5-5
Error

.94 IO"14

.67 IO-13

.48 IO-12

.19 IO"11

.57 IO"11

.14 IO-10

Time

1.15
.77
.52
.39
.31
.26

Step-size

.04

.06

.09

.12

.15

.18

Formula 6-6
Error

.97

.11
io-15
10"13

.14 IO-12

.10 io-11
io-11

io-10

.51

.21

Time

1.47
.98
.66
.50
.40
.33

Step-size

.04

.06

.09

.12

.15

.18

Formula 7-7
Error

.73 IO"16

.64 IO-16

.17 IO-'4

.81 IO"14

.75 IO"13

.33 IO-12

Time

1.82
1.22

.81

.61

.49

.41

Step-size

.04

.06

.09

.12

.15

.18

Formula 7-9
Error

.47 IO-16

.99

.27
io-16

io-14
.24 10-"
.14 IO-12
.57 IO-12

Time

2.60
1.74
1.16

.87

.70

.58

Step-size

.04

.06

.09

.12

.15

.18

Formula 8-10
Error

.58 IO"16

.10 io-16

.43 IO"15

.34 10-14

.16 IO"13

.60 IO-13

Time

3.03
2.02
1.35
1.02

.81

.68

Step-size

.04

.06

.09

.12

.15

.18

Formula 8-12
Error

.57

.37
io-16
io-16

.96 IO-16

.81 IO-15

.49 IO-14

.22 IO-13

Time

3.97
2.65
1.77
1.33
1.07

.89

(4). The equation used was the same as in (2) above. The initial value was

(1, 1, 1) as above, but the interval now is x = 1 to x = 181. This data was pro-

grammed in extended double precision on an IBM 7094 at the Computation Di-

vision, Marshall Space Flight Center, Huntsville, Alabama.

Step-size

.04

.06

.09

.12

.15

.18

Runge-Kutta 4-4
Error

.10 io-3

.51  IO-3
io-2
io-2

.26

.83

.20 IO"1

.41  10-'

Time

1.81
1.22

.81

.61

.50

.42

Step-size

.04

.06

.09

.12

.15

.18

Formula 4-4
Error

.38 IO"4

.19 IO-3

.96 IO-3

.30 IO-2

.74 IO-2

.16 IO"1

Time

1.98
1.33

.88

.68

.55

.46

Step-size

.04

.06

.09

.12

.15

.18

Nyström 5-6
Error

.12 IO"5

.93 10"'

.68 IO"4

.27 IO-3

.79 IO-3

.18 IO-4

Time

3.20
2.13
1.43
1.08

.86

.67

Step-size

.04

.06

.09

.12

.15

.18

Formula 5-5
Error

.40

.27

.16

.45

io-s
IO"5
io-4
io-4

.46 10-4

.16 10-3

Time

2.58
73
17
88
70
60



38 E.   BAYLIS   SHANKS

Step-size

.04

.06

.09

.12

.15

.18

Huta 6-8
Error

.45 10-"

.56 10-5

.72 lO"4.

.45 10-3

.19 10"2

.59 10-2

Time

5.08
3.40
2.26
1.72
1.37
1.15

Step-size

.04

.06

.09

.12

.15

.18

Formula 6-6
Error

.95 10-7

.84 10-6

.67 10"5

.25 10-"

.50 10"4

.32 lO"4

Time

3.33
2.21
1.50
1.11

.90

.76

Step-size

.04

.06

.09

.12

.15

.18

Formula 7-7
Error

.27 10-8

.89 lO"7

.18 10"5

.11 io-4

.40 10-4

.10 io-3

Time

4.16
2.78
1.87
1.40
1.12

.95
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