
Some Locally One-Dimensional Difference
Schemes for Parabolic Equations

in an Arbitrary Region

By Bert Hubbard

1. Introduction. In a paper [6], A. A. Samarskii first proposed a "locally

one-dimensional" finite difference scheme for the first boundary problem for a para-

bolic equation where the cross-section of the cylindrical domain involved was arbi-

trary. He analyzed the scheme in maximum norm and by means of a discrete form

of the maximum principle was able to obtain estimates for the order of convergence.

These estimates range from 0(t + h) to 0(t + h2) depending on the nature of the

cross-section, cf. Hubbard [4].

In [4] a number of locally one-dimensional schemes are proposed and error

analyses made in maximum norm which are either 0(t + h) or 0(r + h2) depend-

ing on the particular scheme employed. The point of view taken was to define a

finite difference analog at each time level whose matrix was a product of tridiagonal

matrices. Such an approach has the merit of allowing a more precise analysis of the

contribution to the error from "regular interior" points and "irregular interior"

points, i.e. those near the boundary. Such an analysis sheds some light on the diffi-

culties involved in formulating 0(r  + h ) schemes for general cross-sections.

In this paper we adopt the point of view of Samarskii [6] and, using his decompo-

sition of the error, we formulate and analyze a series of economical difference

schemes for arbitrary cross-sections whose order of convergence ranges from

0(t + h) to 0(t + h2) depending on the scheme chosen. The techniques employed

in the error analysis are related to those used by Bramble and Hubbard [1] and

elaborated in later papers.

Economical difference schemes were first suggested in 1955 by J. Douglas [2]

and Peaceman and Rachford [5] and since then a vast literature has arisen in this

area. The reader is referred to the paper of Samarskii [6] and Douglas and Gunn [3]

for further references.

2. Locally One-Dimensional Schemes. Since this paper is closely connected

with that of Samarskii [6] we shall use notation consistent with his wherever pos-

sible. We consider the parabolic equation in p space dimensions

du
c(x,t) —- = Lu +/(x, t),

at

v

(2.1) Im =12 Lau,
«-i

Lau = — (fc„(x, t) -— ) + ra(x, t) ~ - qa(x, t)u,
dxa \ dxa/ dxa
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where x = (xi, - • • , xp). The functions c, /, ka , ra , and qa satisfy certain smooth-

ness criteria which are given in [6]. Let R be a bounded region in p space with

boundary V, and

(2.2)    Ä = Ällr,       QT = ÄX [0 ^ t é T],       QT = R X (0 < t ú T).

Let u(x, t) be a solution of

c — = Lu + /       in    QT ,
at

^2-3'                        Mir = m(«, 0 for   x Ç T    and,    t Ç (0, T],

w(x, 0) = Uo(x) for   x Ç Ä.

We assume further that in QT ,

(2.4) ka(x, t) =k*> 0, c(x, i) S c* > 0,        qa(x, t) = 0.

The assumption on qa is made only for convenience since a well-known change of

dependent variable will cause it to be satisfied. In addition to smoothness assump-

tions on the data of the problem we require certain smoothness of m as specified in

[6].
In the usual manner we place a mesh on the cylinder with mesh constants ha ,

a = 1, • • • , p and t in the space and time variables respectively. On any cross-

section the mesh points in R make up the set Rk . The boundary crossings make up

the set rA. The "regular" interior points, i.e. those points of Rh whose 2p nearest

neighbors are in Rh = Rk U I\ make up w, and we define o> = Rh — co. Those

points of oi with a neighbor in the xa direction not in R make up the set wa .

Clearly o   = U£-iwa .

In addition to mesh points at levels tn , n = 1,2, • • • where tn = nr we assume

that the mesh is further subdivided into the fractional levels t„+a/P = (n + a/p)r,

a = 1, • • ■ , p. With each of the fractional levels we associate the operator La ,

a = 1, • • -, p. It is this operator which we approximate at each of the points of

Rh by the operator A„ . Instead of considering, as does Samarskii, a general class of

0(t + ht) local approximations at points of Rh — a*, we shall, for the sake of

definiteness, take the specific one given by

(2.5) Aay =:   (ka(x{-U2"\ t)yia)Xa + ra(x, t)yia - qa(x, t)y,

where

x(±m°) = {xi, • • • , x„-i, xa ± mh, x«+i, • • • , Xpj,

i^-íd^.o   yia = y—y-
.(-!«)

(2.6)
v™ - y

<f*a = 0.5(yia + yzJ,¡fia l !

ha

P p

£ r„(x, t) = r(x, i), £ qa(x, t) = q(x, t).
a=\

In particular, at the level i3+a/P, we shall approximate the one-dimensional

differential equation

(2.7) - c(x, t) § - Em - fa(x, t)
p dt
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at points x £ Rh by the finite difference equation

(2.8)    Uay =- c(x, t*)y\:alp - Ay'+a,p = f(x, t*),        £/a(x, Í,*) = f(x, t*),
a-l

where

2/'+a/P » 2/(z, «/+«/*)»

(2-9) ***      1
2/'   '",'   ■   -   foi*, tj+a/p)   -   y(x, íy+(a-l)/p)],

*
and iy   is a point in the interval [jr, (j + 1)t].

It is easily seen [6] that under suitable smoothness assumptions

(2.10) 4,a*=-nau-±c^+Lau = 0(T + ha2)
p    dt

for x £ Rh — o>a , and t = t¡   in the last two terms.

At a point (x, iy+«/P) where x £ to„ we define Aa to be the 0(r + A„) approxi-

mation to La obtained by interpreting (2.5) in the usual way when the presence of

a boundary crossing causes the mesh spacing to be irregular. For example,

if x, x+la G Rh and x~l° G I\ where 0 < I = 1 then (2.5) becomes

It is not difficult to establish that under the smoothness assumptions given in [6]

1    du
(2.12) t«* =: n„ u - - c ■£■ + La u = 0(t + /i„)

p     oí

at such a point.

The finite difference analog of (2.1) is now taken to be

n„w = fa,       t = (n + «/p)t,       x G Ä*,

(2.13) yir» = m,

w(x, 0) = M0(x).

3. Properties of Inverse Matrix. If {ha\ are taken to be sufficiently small then

the matrix of the system (2.13) is seen to be of positive type [1] and hence the in-

verse matrix exists and is non-negative. A typical element of the inverse matrix,

g(x, t; x, t), satisfies the equations

Ua,ix<t)g(x, t; x, t) = ô(x, t; x, t), t = (n + a/p)r,       x G Rh ,

(3.1) g(x,t;x,î)=ô(x,t;x,î), x G T«,

g(x, 0; x, t) = 6(x, 0; x, ï), x G Rh,

where 5 is the Kronecker delta defined by

/o n\ t/    t   - t\      J1 ; '     x = x and t = t,
(3-2) 5(x,<;x,0=(0.        otherwise_
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In terms of g any mesh function w(x, t) has the representation

w(x, t) m   £    £   g(x, t; x, î)Ûw(x, t)

(3.3)

+   £    £  g(x, t;x, t)w(x, t) +   £  g(x,t;x,0)w(x,0),
<=t/p igr» ïgBj,

where I in the above sum ranges over r/p, 2r/p, ■ ■ ■ , r, (1 + \/p)r, ■ ■ ■ ,

(n + ß/p)r = t and at the level I = (m + a/p)r the operator fl ss II „ with

wít ^ f   i£ (m + 1 ) r. As has already been mentioned

(3.4) g(x,t;x,t) = 0.

We now obtain bounds on certain partial sums of the finite difference Green's

function g(x, t; x, t) which aid in the estimation of the order of convergence.

In (3.3) we set w(x, t) = 1 and obtain the inequality

t

(3.5) 12:   £    £   ¡7(x, t;x, t) +    £   g(x,t;x,0).
i=rlp   zcTh ííRh

If we set w(x, t) = in (3.3) and use the fact that Uaw — cwta for x G Rh and

w — 0 on Th then upon dropping certain non-negative terms it follows that

(3.6) ? ^   £      £    g(x,t;x,t),

where c* is given in (2.4).

Also upon setting

(37) w^^ = \o,     x£r„,

in (3.3) and noting that Uaw ^ 0 for x G Rh — wa   and

n"w=è[(TwJ = &       for       *6w-*

then we see that

t

(3.8) h'2 è fc* £ £ 0(1, <;i, 0,
i~(n+a/p)T=l/p       ig<»a*

where fc* is the lower bound for fc given in (2.4) and h is defined by

V

(3.9) h2 = £ A«2-
«-i

4. Order of Convergence Estimates. Let the error be denoted by z, i.e. z= u — y

where u and y are solutions of (2.1) and (2.13) respectively. As does Samarskii

[6], we decompose z into

(4.1) 2   =   V  +   i,,

where r¡ satisfies

c(x, <*)t)í« = 'Pa ,       x G Rh,       t = -,■■■, T

(4.2) _ P
n(x, 0) = 0,       x £ Rh,
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with

(4.3) *„° - C-^*± 6£ (x, f) - La u(x, f) - fa(x, (*).
p       at

We note that for each level, mr ^ t   ¿ (m + l)r.

(4.4) £ ¿a° = 0.
a-l

The solution of (4.2), as pointed out by Samarskii, is easily seen to be

(4.5) ,(*, tj+alP)  =   (r/c)¿*,° =   -(r/c)  £   *." = 0(r).
<r«=l ff=o+l

We now use the inequalities of Section 3 to obtain estimates for v. Clearly for

P £ Rh

(4.6) Uaz = n„M - na2/ = ^„° + *a* ,

where $a* is 0(t + /!„), p £ co„   or 0(t + fea ), p £ Rh — o„ , and hence

(4.7) UaV   =   UaZ   -   UaV   =   ̂   +   A„1J.

In view of (2.9), (2.12), (4.5) and (4.7) and with proper smoothness assump-

tions we see that

f i
-0(r + O; x £ Ä„ -»„*
c*

— 0(r + Ä„); X £ a>„*.
k c*

Substituting w = v into (3.3) and applying inequalities (3.5), (3.6) and (3.8)

together with the estimate (4.8) and the fact that v = — j? = 0(t) for x £ Th,

v = 0 for / = 0 we have

| v(x, 01  á - 0(r + fe2) +  ~V £ A-tyr + A.) + \ 0(r)
(4.9) c* c* ft* „=i c

= 0(t + fe2).

In view of (4.5) and (4.9) we see that

(4.10) z = 0(t + fe2)

which is the desired error estimate.

5. Other Difference Schemes. As in [4] we shall formulate some alternative

locally one-dimensional difference analogs which can be analyzed in the same manner

as the one given above. The first of these involves interpolation to the boundary

and is somewhat similar to the scheme considered by Samarskii [6]. The two schemes

will differ for most regions since the set (ca does not normally coincide with the

corresponding point set at which Samarskii interpolates to the boundary.

In place of (2.11) we define

(4.8) 7T.  1'(X, tj+a/p)    =    <
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The difference analog (2.13) is replaced by

naJ/ = fa ;       x £ Rh - oia*,       t = (n + a/p)i-,

na?/ = 0; x £ co«*,

y(x,0) = ito(x).

It is easily verified that the results of Section 3 again are valid. Equation (4.8)

is replaced by

/ro\ TT „in- i       \ _ ¡0(r + ha2); xeRh-oia*,
(5.3) llaV(x, tj+alp) -\0{1)+0{t).       ié Wa*>

where we have suppressed the dependence on c* and fc* and consequently (4.9)

takes the form

(5.4) | v(x, t)\ = 0(r + h2) + h20(l) = 0(t + h2).

The equation (4.10) is thus seen to be valid in this case.

An 0(t + h) scheme can be formulated in various ways [4]. We give only one

example. Let the sets Rh and co   be defined as before. Since we wish to look upon

co* as the "boundary" of our mesh cross-section we define the new point sets oia

to be those points in Rh — co  with a neighbor in the xa direction which belongs to

co , a = 1, • • • , p. Our locally one-dimensional scheme is then defined by

n„2/ = fa ;       x £ Rh — co*,       t = (n + a/p)r,

(5.5) y(x, 0) = uo(x),

p
y(x, t) = u(x, t);       x £ co*,        £ (xa — x„)2 g h2.

a = l

To investigate the error arising from this scheme we develop the inequalities of

Section 3 for an "interior" Green's difference function using the following mapping

Rh —> Rh — co ,

(5.6) rh -+ oi*,

* **
Ola     —* Ola    ■

Using the same mapping we see that the results of Section 4 hold without change

through (4.7). Equation (4.8) is replaced by

(5.7) Jlav(x, ti+aip) = 0(r + ha2);       x £ fi, - co*.

Now upon substituting w = v into (3.3) and applying inequalities (3.6) and (3.8)

(noting that n = O(t) and hence v = 0(t) + 0(h), on co*) together with the

estimate (5.7) we see that

(5.8) | v(x, t)\ = 0(t + h2) + 0(t) + 0(h) = 0(t + h).



ONE-DIMENSIONAL  DIFFERENCE  SCHEMES   FOR  PARABOLIC   EQUATIONS 59

Consequently in this case we have

(5.9) z = 0(t + h).
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