(b) With a slightly different algorithm i.e.

$$
\begin{aligned}
& x=P^{2}-Q^{2}-R^{2} \\
& y=2 P Q \\
& z=2 P R .
\end{aligned}
$$

We find for $x=495, y=840, z=448$,

$$
x^{2}+y^{2}+z^{2}=1073^{2}, \quad x^{2}+y^{2}=975^{2}, \quad z^{2}+y^{2}=952^{2}
$$

$x^{2}+z^{2}$ not a square.
(c) The sets $(1008,1100,1155)$ and $(1008,1100,12075)$ have two numbers in common.
(d) There are several sets of (x, y, z) which have one value in common e.g. (2964, $9152,9405),(2964,6160,38475)$ and (5643, 43680, 76076), (5643, 14160, 21476).

Department of Mathematics
Memorial University of Newfoundland
St. John's, Newfoundland, Canada

1. W. Sierpífski, A Selection of Problems in the Theory of Numbers (English transl.), Pergamon Press, Oxford, 1964.
2. L. E. Dickson, History of the Theory of Numbers, Vol. II, Chelsea, New York, 1952.

Some Designs for Maximal ($+1,-1$)-Determinant of Order $n \equiv 2(\bmod 4)$

By C. H. Yang

When $n \equiv 2(\bmod 4)$, Ehlich [1] has shown that
(i) the maximal absolute value α_{n} of nth order determinant with entries ± 1 satisfies

$$
\alpha_{n}^{2} \leqq 4(n-2)^{n-2}(n-1)^{2}=\mu_{n}
$$

(ii) matrices M_{n} of the maximal nth order ($+1,-1$)-determinant whose absolute value equals $\mu_{n}{ }^{1 / 2}$ exist for $n \leqq 38$, provided that " $(n-1,-1)_{p}=1$ (Hilbert's symbol) for any prime p," which is also equivalent to "any prime factor of squarefree part of $n-1$ is not congruent to $3(\bmod 4)$."

It is found that M_{42}, M_{46} also exist by Ehlich's method and such maximal matrices M_{n} are likely to exist for all $n \equiv 2(\bmod 4)$ if $(n-1,-1)_{p}=1$ for any prime p. This means that for $n<200$, all such matrices are likely to be found except for $n=22,34,58,70,78,94,106,130,134,142,162,166,178$, and 190.

The maximal matrix M_{n} such that

$$
M_{n} M_{n}{ }^{T}=\left(\begin{array}{cc}
P & 0 \\
0 & P
\end{array}\right), \quad \text { where } P=\left(\begin{array}{lll}
n & & 2 \\
\ddots & \\
& \ddots & \\
2 & & n
\end{array}\right)
$$

[^0]and $M_{n}{ }^{T}=$ the transpose of M_{n}, can be constructed from the following (cf. Ehlich [1]):
\[

M_{n}=\left($$
\begin{array}{cc}
A_{1} & A_{2} \\
-A_{2}{ }^{T} & A_{1}{ }^{T}
\end{array}
$$\right),
\]

where A_{1}, A_{2} are circulant matrices of order $n / 2$.
For $n=42,46$, the designs for the maximal matrices M_{n} are:

$$
\begin{array}{ll}
n=42 ; & A_{1}:----++-+-+--++-++-+++ \\
& A_{2}:--+++-+-+-++++++++++ \\
n=46 ; & A_{1}:----++-+-+--++-+++-++++ \\
& A_{2}:---++-+-+++-++-++++++++
\end{array}
$$

where - stands for $-1,+$ for +1 .
Another design for $n=38$ is found as follows:

$$
\begin{aligned}
& A_{1}:---++-+-+++-++-++++ \\
& A_{2}:---+++-++-+++++++-+
\end{aligned}
$$

For $n=50$, the maximal matrix M_{n} can be constructed by taking $A_{i}=A_{2}=$ the matrix of Raghavarao [3], without circulancy.

As noted in the design of above maximal matrices, the numbers n_{1} and n_{2} of -1 's respectively in each row of A_{1} and A_{2} can not be arbitrary. For example, when $n=38 ; n_{1}, n_{2}$ must be either 6 or 7 , provided $n_{1}, n_{2}<n / 4$. Similarly, when $n=42 ; n_{1}, n_{2}$ must be either 6 or 10 : when $n=46$; either 7 or 10 .

For $54 \leqq n<200$, the following table of n_{1} and n_{2} is helpful to construct the maximal matrices. ($n_{1}, n_{2}<n / 4$)

n	54	62	66	74	82	86	90	98	102	110	114	118	122	126
n_{1}	9	10	$12(11)$	13	16	$16(15)$	16	18	20	21	21	22	25	25
or	$124)$													
n_{2}	11	15	$13(15)$	16	16	$18(21)$	21	22	21	24	28	28	25	27

n	138	146	150	154	158	170	174	182	186	194	198
n_{1} or n_{2}	27	30	29	31	31	$34(36)$	36	36	$38(37)$	39	42

4 Gunnison Park Boulevard
 Oneonta, New York

1. H. Еhlich, "Determinantenabschätzungen für binäre Matrizen," Math. Z., v. 83, 1964, pp. 123-132.
2. H. Ehlich \& H. Zeller, "Binäre Matrizen," Z. Angew. Math. Mech., v. 42, 1962, pp. 20-21.
3. D. Raghavarao, "Some optimum weighing designs," Ann. Math. Statist., v. 30, 1959, pp. 295-303. MR 21 *3077.
4. D. Raghavarao, "Some aspects of weighing designs," Ann. Math. Stastist., v. 31, 1960, pp. 975-986.

[^0]: Received June 16, 1965.

