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Numerical methods for the solution of the initial value problem in ordinary

differential equations fall mainly into two categories: multi-step methods and Runge-

Kutta methods. For these and for some closely related methods, the convergence

of the numerical solution to the exact solution as the step size tends to zero, has

been studied by a number of authors [1, 2, 3]. It is the aim of the present paper to

make a similar study for a fairly general class of method which includes both main

classes of method as special cases. Also, it is applicable to methods which combine

features common to both multi-step and Runge-Kutta methods such as the methods

of Urabe [4], Gragg and Stetter [5] and Gear [6].

Although the standard treatments of convergence theory can be simply modified

to include these new methods, there is some advantage in having a theory which

includes them in a completely natural way. It is hoped also that some previously

untried but useful methods may be suggested by the formalism of this paper.

The initial value problem we suppose can be written in the form

(1) g = f(y),       y(xo) = «,

where y is a point in the (real) Euclidean if-space Ru and f(y) is a mapping of R*

onto itself satisfying the Lipschitz condition

(2) |f(y) -£(z)| <¡L|y-z|,

for any pair of points y, z Ç RM ■ L is a constant and | v | for v (E RM denotes a

norm. Although the particular norm used is irrelevant for most purposes, a number

of details in the results of this paper take a simpler form if the norm used is defined

by

(3) |v| = max [| v1 |, | v* |, • • ■ , | v* |),

v1, v , • ■ ■ , v" denoting the components of v. Accordingly, we adopt (3) as the

definition of | v |.

It will be necessary to consider sets of points Vi, v2, • • ■ , v^ Ç. RM and we shall

regard such a set as corresponding to the point V = V] © v2 © • • • © v* 6 Rmn ■

The norm of V £ RMN will be defined in a similar way to (3) and a similar notation

| V | will be used. Clearly

(4) |V[ = max j| vi I, | v, |, ••■ , |v,|j.

We will have to make use of mappings from RMN to Rus such as V —> W = Wi

© w2 © • • • © ww , where
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N

(5) w¿ = 2Z aijVj, i = 1, 2, • • • , JV,

and aXx, an , • • • , «aw are elements of a matrix 4. For this mapping we shall use the

notation

(6) W = [A]V,

so that [A] is a linear operator on RMN to Rmn ■ \A\ will denote the norm

max,- /.¿Li I Oy I so that

(7) |[A]V| á [ A l-l V[.

Another type of mapping that will arise is that given by V —> W, where

(8) w, = f(v,), i « 1, 2, • • • , JV

and f is the function occurring in the statement of the initial value problem (1). We

shall write

(9) W = F(V)

to denote this mapping and we see that F satisfies a Lipschitz condition with the

same constant L as for f.

We are now in a position to formulate the general method with which the rest of

this paper is concerned. It consists of the performance of a sequence of steps num-

bered 1, 2, 3, ■ • • such that at the start of step n, N points in Am are given. We denote

these by y,0-", y^, • • • , y,"-1' and write Y'""1' = y^"1' © y,'""1' © • • ■

© yjr<""1). At the end of the step YM = yxM © y2(n) © ■ • • © jKw is given by

( 10) y¡(n) = t ««y/""1' + a ¿ |M(7/W ) + M(y/B_1) )},
3-1 3=1

which can be written as

(11) Y(n) = [AJY'"-1' 4- h[B]F(Y(n)) + Ä[CJF(Y<B_1)),

where the matrices A, B, C with elements at¡, 6,y, cy (i,j = 1, 2, ■ ■ - , N) character-

ize the method. We interpret yi1"-", y2<"~1), • • • , yv("-1) as approximations to y(x)

for a set of N values of x and yi<n), y2("', ■ • • , y# ", as approximations when the values

of x are each increased by h (the step size). For simplicity with no loss of generality

we shall assume h > 0 and that the method is used to find y(x) only when x > xo.

The method defined by A, B, C will be denoted by ( A, B, C) and in the particular

case when C is the zero matrix by (A, B). There is no loss of generality in consider-

ing only methods of this last form since (A, B, C) is equivalent to (Ä, B), where

*-[?  °o\

«3, ».[J  ¡jj
and 0, I are the N X N zero matrix and unit matrix respectively.

Before proceeding, it must be remarked that (11) is of the form

(14) Y<n) = G(Y(n))
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and in general does not define Y(n) explicitly. However, if Y = yi © y2 © • • • © y*

and Z = Zi © z2 © • • • © zs are any two points in RMN, then

(15) |G(Y)  - G(Z)|  = A|[B]{F(Y)  - F(Z)J |  g hL\ B |-| Y - Z |

so that if

(16) A<1/(L|B|)

then Y —> G (Y) is a contraction mapping. Thus if h is sufficiently small, Y(n) is

defined uniquely by (11) and may be evaluated iteratively. For a computer realiza-

tion of the procedure for evaluating Y(n>, it is more convenient to use an iteration

process based on the equation

(17) Y(n) = G(Y(n)),

where G~(Y) - gl(Y) © g2(Y) © • • • © gv(Y) is related to G(Y) = g^Y) ©

fc(Y) © • • ■ © g»(Y) by

gi(Y) = gx(jx © y2 © • • • © y*),

g2(Y) = g2(gi(Y) © y2 © ■ • • © yN),

(18) g,(Y) - g,(g,(Y) © g2(Y) © , • • © y„),

g*(Y) = g»(gi(Y)   ©  g2(Y)   © ©  g*-i(Y)   © yK).

With the norm defined by (3), it is trivial to prove that Y —> G(Y) is a contraction

mapping if the same is true for Y —> G(Y), so that (16) is sufficient for either

type of procedure.

To illustrate the variety of methods that can be written in the form (A, B) we

note that the multi-step method given by

(19)   y„ = ?iy„-i + • • • 4- «*y«-* + Mni(y„) + nf(y»_i) + ■ ■ • + rki(yn-k)),

where y„ denotes the numerical solution at the point x0 4- nh, is equivalent to

(A, B) with N = K + 1 and

(20)

0    1
0   0

0

1

0   0       0

0    qk    qk-x

0
0

1

(K

(21) B =

0
0

0
0

0      0       0

n   n-x   n-2

0
o

o
r«

On the other hand an JV — 1 stage Runge-Kutta process takes the form (A, B)

with
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(22) .4 =

0 0 0
0 0 0
0 0 0

ó ó ó

(23) B =

0
621

631

0

0
bzi

0

0

0

In the example of the classical fourth order process we have

(24) B =

0    0    0    0    0

10    0    0    0
o^ooo
0   0    10   0

01111
6       3       3       6

A final example we consider is neither a linear multi-step nor a Runge-Kutta

method. It has the form (.4, B) where

(25)

0 0 0   0 1
0 0 10 0
0 0 0   0 1
0 0 0   0 1
0 0 0   0 1

(26) B =

0

0
1
i

0

0
0 0 0
0   0   0

-I 0 0 0

12    0   0

0 6       "J

As it happens, this method yields values of y6<B> which differ from y(xa + nh) by

about the same amount as for the classical Runge-Kutta method if it is started by

the formulae y6(0) = n, y3(0> = n — |Af(n). It has the advantage over 4th order

Runge-Kutta methods in that it requires only three derivative calculations per step.

We shall not be concerned in this paper with methods of obtaining the starting

vector Y(0) but we shall suppose this is done in such a way that in the limits as

h (0)0, y,lu; —» n for i = 1, 2, • • • , N. We now define convergence as follows:

1. (Definition). (A, B) is said to be convergent if for any initial value problem (1)

satisfying (2), the following statement can be made: If (A, B) is used to compute

n ©

0 as

YM with step size h = (x — Xn)/v, where Y    is given in such a way that | Y

n© ••■ ® n I -+ 0 os c -» « then \ YM - y(x) © y(x) © • • • © y(x)

(0)

Just as for linear multi-step processes it is convenient to introduce concepts of

consistency and stability for (A, B). However, it is convenient first of all to con-

sider A bv itself.
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2. (Definition). A is consistent if As = s, where s is the vector in RN with every

component equal to unity.

3. (Definition). A is stable if there is a constant a such that for any positive

integer n

(27) | A" | g a.

The following results are consequences of these definitions.

4. If all eigenvalues of A have magnitude less than 1 except for a simple eigenvalue

at 1, A is stable.

5. If A is stable, no eigenvalue has magnitude greater than 1.

6. If A has minimal polynomial P(z), then A is stable if and only if no zero of

P(z) exceeds 1 in magnitude and all roots of magnitude 1 are simple.

7. A is stable if and only if there is a nonsingular matrix T such that | T~  A T\ ;£ 1.

8. If A is consistent and has only non-negative elements, then A is stable.

9. Ä given by (12) is stable if and only if A is stable.

10. A given by (12) is consistent if and only if A is consistent.

11. A given by (20) is stable if and only if no zero of

(28) Q(z) - z" - qxz"-1 - q2z"-2-qk

exceeds 1 in magnitude and all zeros of magnitude 1 are simple.

12. A given by (20) is consistent if and only if Q(z) given by (28) has a zero equal

to 1.

13. A given by (22) is stable.

14. A given by (22) is consistent.

Proofs. 10,12 and 14 are immediate consequences of the definition of consistency.

4, S and 11 are trivial consequences of 6. 13 is an example of 8 which follows from

7 with T = 7. 9 is immediately seen from the obvious formula

(29) !■-[£.    g]

so that | Ân j = max (| A" |, | A"_: |).

It remains to prove 6 and 7. Let the Jordan canonical form of A be (Xi/i 4- ¿i«/i)

© (X2J2 4- 52J2) © ■ • • © (\,I, -\- oj,), where the orders of the various blocks

are i\,r2, ■ ■ ■ , rs such that n + r2 + ■ ■ • + r, = N. /,- (i = 1, 2, • • • , s) is the

r, X r, unit matrix and/,- is the r, X r, matrix with every element zero except those

immediately below the main diagonal and these are unity. The X, correspond to the

eigenvalues of A and the 5, are arbitrary non-zero numbers. If for any i, r,■ = 1, J,

consists of the 1 X 1 zero matrix and the term oj, is omitted in such a case. Con-

sider the three statements

»Si : I Xi | ;S 1 for i = 1, 2, ■ ■ ■ , s and for all i such that | X¿ | = 1, r¿ = 1.

St : T exists such that | TlAT | á¡ 1.

S3 : A is stable.

From the relationship between the Jordan canonical form and the minimal

equation we see that 6 asserts the equivalence of Si and *S3. Also 7 asserts the

equivalence of S2 and S-¿ . We will thus have proved 6 and 7 when we have shown

1 In the theory of linear operators, the term "power-bounded" is used for this property.
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that Si => S2, S2 => S3, and S3 => Si. To deduce S2 from Si we choose T so that

T~ AT is the Jordan canonical form with 5¿ = 1 — | X, ¡ for every i for which

r, > 1. S» follows from S2 since | A" | = | T(T~1AT)nT~l \ ^ \T\-\ T~l |. Finally

we deduce Si from S3 by noting that | (X¿/< -f 5¿J,)" | S; | X,- |" for all i and that

| (\Ji 4- 0iJi)n | 3: n\ X¿ |"~ | á, | whenever rt > 1:

We now state two necessary conditions for convergence.

15. If (A, B) is convergent, A is stable.

16. If (A, B) is convergent, A is consistent.

Proofs. To prove 15 we suppose that (A, B) is convergent but A is not stable

and we use (A, B) for the solution of the initial value problem defined by M — 1,

/' = 0, i/1 = 0, Xq = 0, x = 1. Let an = | A" | and let v„ 6 RN be such that | Anvn |

= a» , I v„ | = 1. Furthermore, let ßn = max (ax ,a2, ■ ■ ■ ,an) and define w„ = /3n-1v„

so that, since A is not stable, | w„ | —> 0. If we choose Y<0) as w„, write h = 1/v

and perform the solution to the initial value problem using (A, B), we find

y<*) _ ^'w^ gince the method is convergent and the true solution is y1(x) = 0,

we have | AV, | —► 0 as v —* °°. But | A*w„ | = a„//3„ which equals 1 for an infinite

set of values of v.

To prove 16, we assume (A, B) is convergent and apply it to the solution of the

initial value problem defined by M = 1, / = 0, 771 = 1, x0 = 0, x = 1. We choose

Y<0) = s independently of v, so that convergence implies that | A's — s | —> 0

as v —> 00. But

I As - s I á I A"+1s - As I + I A'+1s - s |

^ I A I • I A's - s 14- I A"+:s - s I

-^0

so that As = s.

Further definitions and theorems now follow.

17. (Definition). (A, B) is semi-consistent if A is consistent and if there is a

t € Rn and a scalar c such that

(30) At 4- Bs = t -f- cs.

18. (Definition). (A, 15) is stable if A is stable.

19. If (A, B) is stable and semi-consistent, the value of c in (30) is unique.

Proof. If  (30) were also satisfied with t, c replaced by t, c   where c 9e c ,

we would have A(t — t ) = (t — t ) 4- (c — c )s so that t — t is a member of the

null space of (A — I)2 but not of A — I. Hence, the minimal equation of A con-

tains a repeated unit root contrary to 6.

It may be remarked that t in (30) is not unique but may be altered by the addi-

tion of any null vector (for example s) of A — I.

20. If A is consistent and the characteristic equation of A has only a simple root

at 1, then (A, B) is semi-consistent.

Proof. Let V be the range space of A — I so that V is of dimension N — 1

and s{ F. Hence, an arbitrary vector of RN can be written as a linear combination

of s with a member of V. Write c as the component of s in Bs and the result follows.

21. (Definition)- (A, B) is consistent if it is semi-consistent and the velue of c

in (30) is 1.
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22. If (A, B) is semi-consistent with c 9e 0, (A, (l/c)75) is consistent.

The proof of this result is immediate. Before proceeding further we return to

the examples (A, B) given by (12), (13), by (20), (21) and by (22), (23).
23. (A, B, C) is semi-consistent (that is, (Ä, B) given by (12), (13) is semi-

consistent) if and only if A is consistent and t (E 7?^ and c exist such that

(31) At 4- (B 4- C)s = t 4- cs.

24. If A given by (20) satisfies the conditions of 11 and 12 so that A is stable and

consistent, and if B is given by (21), then (A, B) is semi-consistent with

c = (r„ + n + ■ • • 4- rt)/(gi + 2q2 + ■■■ + kqt).

25. 7/A is given by (22) and B by (23), then (A, 75) is stable and semi-consistent

with c = bjvi 4- bN2 + ■ ■ ■ + bv,K-i.

Proofs. 23 follows by noting that (31) is equivalent to

(32) At 4- 75s = t 4- cs,

where t = t © (t — es), s = s © s. 24 can be verified immediately with t in (30)

such that its component number i is — c(k 4- 2 — i). The part of 25 not included

in 13 and 14 is an example of 20. It may be remarked at this point that the con-

sistency and stability of (A, 75) where A, B are given by (25), (26) follow in a

similar way.

We now come to the two main theorems.

26. If (A, B) is convergent, it is stable and consistent.

Proof. In view of 15 and 16 we may assume  A   is  stable  and  consistent  if

(A, 75) is convergent. We need only prove that there is a t £ 7?^ such that

(33) At 4- 75s = t 4- s.

As for the proofs of 15 and 16 we prove this result by considering a special example.

We take M = 1, / = 1, if = 0, Xo « 0, x « 1 and Y(0) = 0 independently of v.
With h = 1/v we find

(34) Yw = - (A-'1 + A'-2 + ■ • ■ + I)Bs
V

and for convergence, this must tend to s as v —> ». Since A is stable, the range space

and the null space of A — 7 are disjoint so that we may w-rite Bs — s = (/ — A )t 4- v

where v is in the null space of A — 7. Substitute into (34) and we find

(35) Yw - s = - (7 - A")t + v
V

so that

|t| á I Yw - s | +- (1 + | A'|)-»0
V

as v —-> cc. Hence v = 0 so that (33) follows.

27. If (A, B) is stable and consistent, it is convergent.

Proof. Let t in (33) have components tx, h , • • • , tu . We may assume by the

remark following 19 that none of ti, t2, ■ ■ • , tN is negative. We write

(37) n/B) = y(xo + h(n + U))
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for i = 1, 2, • • • , N; n = 0, 1, • • • where y(x) denotes the true solution to the

initial value problem (1). Also we write H<n) -  ni(n) © n2<n) ©   -© nN(n) so

that, by the continuity of y(x), convergence will be proved when we have shown

that as v -» =c with h = (x - x0)/v and | Y<0) - H<0) | -» 0 then | YM - HM | -» 0.

It will be assumed that h is no more than some fixed h0 satisfying (16).

Let E(n; = d'"' © 62e"' © • • • © eNM be the truncation error in a single step

defined by
(38) E(B) = H<B) - [A]H("-1) - h[B]F(HM).

Our first task is to estimate ECn). We have

2/*(.r„ + h(n + U)) - yk(x0 + h(n - 1 + tj))

(39)
= A(l + U - tj)f(y(x0 + h(n + 0")))

by the mean value theorem, where 6  lies between tj — 1 and /, . Hence we have

y(.r„ + h(n + t,)) - y(x0 + h(n - 1 + tj))

(40)
- A(l 4- U - iy)f(y(a-„ 4- »A)) = u,

where

(41) I u I á h2Lm\ 1 + I, - tj I max (/, ,\1 - tj\)

and in is the maximum of the (continuous) function | f(y(.r)) | for

x € [x0, x + A0 max (t¡, t2, ■ • • , tK)].

¡Multiplying (40) by a,¡ and summing over j we find

£ a„ n/"-1' - A (fib,,) t{j(x, + nh))\
i-l V-i      /

Z o«{«,w - n/""" - A(l + U - t,)f(y(xo + nh))}\
i-i !

A'

^ A27^;i L ! I an \ ■ \ 1 + U - t, \ max (t¡, | 1 - t¡ \)}.
i—i

Similarly we have

(43) I f(n/B}) - f(y(a-o 4- nh)) \ è htjLm

so that

(44) I A £ b„ f(n/">) - A (i btJ) f(y(xo + nh))    ^ h2Lm £ | b„ \ tj.
I    /-1 v-i     / y-i

Combining (42) and (44) we find

(45) I e/B) I ^ A2Lm¿,

where I, is given by

N

(46) /,  =   E (I«« hi 1  + U ~  tj I max «,•, ¡1  -  I, |)-+ | &,v |i,|.

We write for 1 for the vector in RN whose typical component is U .

(42)
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For the accumulated error we use the symbol Z(n)  = Zi<n) © z2(n) ©  • - • ©

z„in) and define this quantity by Z(n) = Hw - Y(B>. We also write F(HU))   -

F(Y(n))  = W(n) = wi(n) © w2(n) ©   • • -  © w„ia\ so that | W(n> |  ^ L\ Z<B) \.

Thus we may write

(47) Z(n) - [A]Z<B_1' - A[jB]W(b) = E(n)

so that

Z(n) = [An]Z<0) + A([75]W(n) 4- [A75]W(n_1) 4-  • • ■  4- [An"lß]W(1))

(48)
4- E(B> 4- [AJE'"-1' 4- • • • 4- [AB-1]E(1).

We now choose constants a, ß, y such that | A" |  ^ a, \ AnB \  ¿ ß, [ A"l |  á y

for n = 0, 1, 2, • • ■ and use (45) with (48) to find

| Z(n) | ^ al Z(0) \+hß(\ W(B) | 4- | W'"-" | 4- • • • 4- | W(" |) 4- nh2Lmy
(49)

Ú a\ Zm [ + hLß(\ ZCn) I + | Z(n-1) | + • • • + | ZC1) |) +nA2LmT.

Hence, it follows that | Z(B) | ^ e(n>, where e(0) = a\ Z(0) | and

(50) e(n> = e(0) + hLß(eln) + e(B-" 4- • • • + e(1)) + nh2Lmy, n è 1.

Thus

(51) e(n) - «(n_l) = AL/3e(n) 4- A2Lm7l »2 1,

so that

(52)
(e(n) 4- hmy/ß) =  (1 - hLß)-\eln~l) -f- hmy/ß)

- (1 - hLß)-"(e(0) 4- hmy/ß).

If we suppose that A g A0 where A0, besides satisfying (16) also satisfies hnLß < 1,

we have

(.53, (1 - H»- S esp^)

so that, writing n = c in (52) and using (53) we find

r(p> !.*»(»>.-.       I <r<0)¡ZH^e     ^«IZHexp^^    4--    _

(54)
((-f

x — Xo)Lß\       (x — x0)my

->($=£&

and the right hand side tends to zero as v —> ».
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