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1. Introduction. In a recent paper, [1], the authors considered a class of formulae

for the numerical solution of

(l) y = f(x,y)\      y(x0) = y0,

in which the underlying interpolant is a rational function: this is in contrast with

classical formulae which are, in general, based on polynomial approximation. With

the formulae of [1], the solution of (1) is locally represented by an interpolant which

can possess a simple pole, thus affording an improved numerical solution close to a

singularity of the theoretical solution of (1). The present paper proposes formulae

containing two parameters which control the nature of the basic interpolant; if it is

necessary that the interpolant possess a singularity, then one of the parameters

controls the position, and the other the nature of the singularity. The value of

these parameters are automatically chosen, and revised, during the computation.

Thus the method produces an algorithm based on a local interpolant which is auto-

matically adjusted to suit the needs of the particular differential equation whose

solution is sought.

Various authors have suggested techniques for enabling numerical methods to

cope with a specific known singularity. Krylov [2] discusses the problem in relation

to quadrature, and Fox [3] refers to a similar situation in second-order ordinary

differential equations. The methods proposed in the present paper do not require

previous knowledge of the nature or position of the singularity: indeed, estimates

for these quantities are provided by the algorithms.

2. Basic Interpolants. Along the x-axis, consider the points xr to be given by

xr = x0 + rh (r = 0, 1, 2, •••),

where A is the distance between consecutive points. We assume that the solution of

(1) is locally represented in the range [xn , xn+1] by the interpolant

L

(2) y*(x) = 22 apxp 4- b | A + x \N,
p=0

where ap , b, A and N are real, L is a positive integer, and

(3) N Î [0,1,2, ■■■ ,L\.

The L -\- 2 constants b, ap (p = 0, 1, • • • , L) are regarded as undetermined co-

efficients, while A and N are the parameters whose values control the position and

nature respectively of any possible singularity of y . If JV is negative, then y*

possesses a singularity at x = —A, but since N is not necessarily integral, the class
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of interpolants corresponding to negative N is wider than that considered in [1]. If

N is a positive integer âL 4- 1, then, in either of the intervals x < — A, x > —A, y*

reverts to a polynomial; positive nonintegral values for N afford a new range of

interpolants.

In the case where A7 £ ¡0, 1, 2, • • ■ , L\ the interpolant y*(x), as defined by

(2), becomes degenerate in the sense that in either of the intervals x < —A,

x > — A, it can be written as a polynomial containing less than L -\- 2 undetermined

coefficients. For such a case, we choose a new non-polynomial interpolant y (x),

defined as

(4)      y**(x)  =   ¿ apxv + b \ A + x \* log | A + x \,      N 6 {0, 1, 2, • • • , L).
p—0

If N = 0, the interpolant has a logarithmic singularity at x = —A.

3. The Formulae. A class of two-point explicit formulae is derived after the

manner of [1]. The formula to be obtained will predict a value yr which approxi-

mates to y(xr), the theoretical solution of (1) at x = xr. If the solution of (1) is

represented in the range [xH, .r„+i] by the interpolant F(x), the following equations

must hold

iï'~V, s = 1, 2, - • • , S,

F(xn) = y« ;       F(a:„+i) = yn+x ;

\d'F(x)l
L   dx'   J*-

where, utilising (1),

,,,. TOta^i     _ rjqw      ,qwi
L       dz"       Jx-x».»-,,, L 3Z Óty Ji-xn.»=yn

provided all the derivatives concerned exist. The value of <S is so chosen that the

number of equations in (5), namely S -f- 2, exceeds by unity the number of undeter-

mined coefficients in F(x). The éliminant of these undetermined coefficients from

(5) then gives the required algorithm.

If F(x) = y (x), as defined by (2), then S = L + 1, and the éliminant is found

to be

(6)

ZA  , <*-«      (A + x„)      , u)
*=i k! «iv

lV1 + ät^;)     2   S TT U + ü J '
where ar'" = m(m — 1) • • • (m — r), r a non-negative integer.

It should be noted that the expression for y given by (2) is not differentiable

at x = —A and this point is necessarily excluded. In practice, this creates no diffi-

culty since, in the case of negative N, integration through the station x = —A,

that is, through the singularity of the interpolant would not be contemplated. It

will therefore be assumed that formulae of class (6) will be applied entirely in one

of the two ranges x < —A,x > —A.
Each formula of class (6) is a truncated Taylor series, with a perturbation
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term. Since the expression in square brackets in (6) is the difference between

(1 4- A/(A 4- xn))N and the first L + 1 terms of the binomial series for the same

expression, it follows that the perturbation term is of order at least AL+1. In fact,

the first term in the expansion of the perturbation term turns out to be

hL+1fn(L)/(L 4- 1) !, and thus the right-hand side of (6) can be regarded as the first

L 4- 2 terms of a Taylor series together with a perturbing term of order AL+2.

Taylor expansion of (6) gives the following expression for truncation error, de-

fined as

T.E. = yn+x - y(xn+x),

(7) ™ _   ^rr       hL+«+1

where

T.E. = 2_, Tq
o-x      (L + q + 1)!

K—L—l

lq-        '" +    (A   +  XnYU      ■

The values of the parameters A and JV are now chosen to satisfy 1\ = T2 = 0.

These values are

j-  (L-H)r   (L)

— A i - = fr    — •'"        ■*"

^     ' I f  <L+1)\2

NM=1+14

A(„) and N(n) are estimates for A and A7 respectively, based on derivatives of

f(x, y) evaluated at x = x„ , y = yn . The value of L, the degree of the polynomial

part of y* is at our disposal. A practical upper bound for L is usually dictated by

the complication of deducing the higher derivatives of f(x, y) from (1). However,

since the principal truncation error of the overall process is now T-¿hL+i/(L -\- 4) !,

quite modest values for L give acceptably small truncation errors.

Let us now consider the class of formulae obtained by the above procedure when

F(x) = y**(x), as defined by (4). This class is found to be

V h    f (*-"   _1_   (—1) (A   -f   Xn)       /„
2/..+1      ».-ZjjjjJ.        + A7!(L - JV)!

(9)

[(> + Thù" * (1 + âÎt)- S tár&v % f^}] ■
where, once again, the use of a formula of this class to integrate (1) through an

interval containing x = —A is precluded. Since xn+1 = x„ -\- A, this restriction

implies that the term 1 -f- A/(A 4- xn), which appears raised to a possibly fractional

power A7 in (6) and as the argument of a logarithm in (9), cannot be negative. Each

formula of class (9) is again a Taylor series with a perturbation term of order Ai+2.

If N takes the value JV where

(10) Ñ € {0, 1, 2, ... ,L],

then the formulae of class (6) are not defined. However if we consider the limit as

JV —> JV, then the value, in the limit, of the perturbed term in (6) can be calculated
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using L'Hôpital's Rule. The resulting formula is identical with (9). The choice

of y* (x), defined by (4), as the alternative local interpolant in the case when

condition (3) is violated, is thus justified. The truncation error series for (9) is

that given by (7), when JV is replaced by JV. Again, the truncation error of the

overall method is of order hL+i.

Formulae (6) and (9) may also be derived as follows. Consider a change of

dependent variable from y to n, where

(11) v = y - b\A + x\N, x ¿¿ -A.

The initial value problem ( 1 ) now becomes

(12) -n' = ^ = g(x, n);       t?(x0) = vo ■

Consider the two-point explicit formula for the solution of (12), based on a poly-

nomial interpolant, and with a truncation error one order less than that of the

class (6) which is sought. This formula is the truncated Taylor series

L     ik

(13) I)n+1   —   Vn   =   2-, 77, r\n
k rxk\

where

The truncation error is

<*) _ [d"v(x,v)l
in =\rd^~\x

°° iL+q

(14) T.E. = Zl,
t=i     u(L + q)l'

where

M9   =   VnU+g\

Solving (12) for n(x) by a two-point explicit formula based on a polynomial

interpolant is equivalent to solving (1) for y(x) by a two-point explicit formula

based on an interpolant of the type (2). Consequently, we substitute from (11)

into (13) to get the formula

».41 -  Vn  =  ßi(A  + Xn + h)N  -(A4- Xn)N] +  E \.(15) *-» fc!

■¡y»M -ßaLx(A + xn)N-k),

where
ß = b   if   x > -A

ß = (-\)Nb   if   x < -A.

( It will be recalled that the final formula will be used entirely in one of these two

ranges.)

Formula (15) still contains the undetermined coefficient ß, but if the principal

part of the truncation error is set to zero, then, by (14),

(¿,+n       „, (t+i)       a„ N( a  _i_ * \n-l-i _ n
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giving a value for ß. With this value, and with yjk+1) replaced by fnk), formula

(15) becomes identical with (6). Its truncation error is now

T.E. = 22MqTf^—,-2        (L + q)\

where it is easily verified that Mq+i — Tq.

Formulae of class (9) can be similarly derived by considering the transformation

V = y - b\A + x\Nlog\A +x\.

4. Applications. The formulae derived in the last section can be applied in a

number of different ways.

I. If the initial condition y(x0) = i/o of (1) is used, equations (8) will yield

initial estimates A(0) and JV(0) . These values are substituted for A and JV respec-

tively in equation (6), which is now solved to give yx. With this value available,

equation (8) affords newer estimates Am and JV(d , and these are now substituted

for A and JV in (6), which now yields y2. Proceeding in this way, applying (8) and

(6) alternately, a numerical solution of (1) is obtained, together with a sequence of

estimates {—A(n)j and {JV(„)| indicating the position and nature of a possible

singularity.

At each step, a test is made to see whether N(n) = JV, where JV £ ¡0,1,2, • • • , L\.

(In practice, this is assumed to be the case if | JV(n) — JV | < «, where e hae a small

positive pre-assigned value. This device will be referred to as the «-switch.) Should

JV(„) = Ñ, then the formula of class (6) is replaced by the corresponding formula

of class (9).
If, in (2), the parameters A and JV had been regarded as undetermined co-

efficients and eliminated in the same way as b and ap (p = 0, 1, • • -, L), another

class of formulae would have been obtained, which would, under certain circum-

stances, give a numerical solution of ( 1 ) equivalent to that obtained by the process

described above. This new class of formulae would, however, be vastly more com-

plicated, and no separate estimate of the position and nature of a singularity could

be obtained. The circumstance in which the method would fail would be when the

value of JV(„) (no longer explicitly available) came too close to one of the values JV.

II. The nature of the problem giving rise to the differential equation ( 1 ) may be

such that values for A and JV are known in advance: these values should then be

substituted into (6), or (9). If only one of A and JV is so known, the other can be

estimated by setting 71! = 0.

III. A third technique, which combines I and II appears to give the best results

in most cases where no advance knowledge of A or JV is available. A solution for ( 1 )

is obtained as described in I: this is called the initial solution. It is continued up

to the station xm at which the difference between xm and — A(m) is small (assuming

that any possible singularity of the theoretical solution lies to the right of the

initial value xo). If the corresponding value of JV(m> is negative or zero (within the

tolerance of the e-switch) the presence of a singularity at — A(m) is indicated.

The values of A(m) and JV(m) are then regarded a.s fixed estimates for A and JV, and

are substituted into (6) to afford a second solution for y as in II above. This is the

improved solution.
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It is important to note that, for a given L, the estimates A(n) and JV(„) , com-

puted from (8) during the initial solution, require evaluation of derivatives of /

up to order L -\- 2. When computing the improved solution, the value of L assigned

in (6) or (9) should thus be increased by two, in order to preserve the same order of

overall truncation error : derivatives of / up to order L -\- 2 will thus be used in the

improved solution as well as in the initial solution.

5. Numerical Results. In view of the variety of possible interpolants contained

in the general local interpolants (2) and (4), it was felt that fairly extensive nu-

merical testing was essential. Accordingly, numerical solutions, by method III of

the last section, are given for three different differential equations. In each case the

algorithm has a truncation error of order A ; that is L = 1 for the initial solution

and L = 3 for the improved solution, and derivatives of / up to order three are

involved. For comparison, a solution of each problem is given by a standard Runge-

Kutta method (the Kutta-Simpson one-third rule) and also by a Taylor series

method. The latter is included since it makes use of exactly the same derivatives

of / as method III proposed in this paper. In every solution quoted, the truncation

error of the algorithm is of order A , and A has the value 0.05 throughout : the «-switch

is set with e = 0.05. The calculations were performed on the IBM 1620 computer at

the University of St. Andrews, working in floating point to fourteen decimal places.

For each example, the following results are quoted in order.

(i) Theoretical solution of the differential equation.

(ii) Initial solution.

(iii)  {JV(n)j, the sequence of estimates for JV.

(iv)  {— A(»)j, the sequence of estimates for —A.

(v) Improved solution,

(vi) Solution by Runge-Kutta.

(vii) Solution by Taylor series, quoted at last tabulated point only. The follow-

ing examples are considered.

Example 1. y   = 1 + y ; 2/(0) = 1. Theoretical solution: y = tan (x 4- x/4).

Example 2. xy' = y + bx2evlbx; y(\) = 0. Theoretical solution: y —

— 5x log (2 — x).
Example^. (1 — x)y  = yiogy;y(0) = e0'2. Theoretical solution: y = 6°-2/(1~J:).

It should be noted that, for the values of L used, none of the theoretical solutions

to the above problems is exactly representable by an interpolant of the type (2) or

(4).
Results (i)-(vii) are given for  Examples  1-3  in Tables  1-3  respectively.

In Table 1, it is seen that not only does the method, applied to this example,

give a much more accurate solution than do comparable classical methods, but that

the estimates for the nature and position of the singularity of the solution (a simple

pole at x = tt/4 = 0.785398163) are good.
For Example 2, the improved solution is only a slight improvement on the

Runge-Kutta solution. A value near 2 for —A is clearly indicated, and although the

sequence {JV(n)} does not give as good an indication as it does in Example 1, never-

theless the falling away towards zero of JV(„) asi-> —A correctly suggests a log-

arithmic singularity. A smaller value for A in the region where [N(n)\ changes

rapidly would give a more conclusive indication.
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Example 3 is perhaps the most testing, since the theoretical solution contains

an essential singularity at x = 1. This is suggested by the steep increase in the mag-

nitude of JV(tl) as xn —-> — A(„) . Despite the fact that the improved solution is com-

puted by setting JV = —2.967132292 (a poor estimate for — °° ), the final solution

is reasonably good for such a difficult equation. Again, the sequences {JV(„i¡,

Í — A(„)j suggest that a smaller value for A be used as xn —> — A(M) .

In each case, the solution by Taylor series is poorer than that by Runge-Kutta.

6. Generalizations. Consideration of the second method of derivation given in

Section 3 shows that implicit formulae and multistep formulae could be derived

along the lines of (6) and (9). Indeed, any of the formulae listed by Lambert and

Mitchell [4] have their counterpart. However, there is a good practical reason for

preferring the two-point explicit class.

Every formula of the class considered in [4] has a truncation error of the same

form as (14). It follows that formulae (8) for JV(„) and — A(n) will have the same

form for every generalization of (6) and (9) corresponding to the formulae of [4].

However, it is only for the two-point explicit class considered in this paper that the

order of the derivatives of/, needed to evaluate JV(n) and — A(n), follow consecu-

tively upon the order of the derivatives of / used in the main formulae (6) or (9).

For implicit and multistep formulae there is a "gap". Thus, for example, the counter-

part of Simpson's Rule will involve no derivatives of / in the main formula, but

since Simpson's Rule has a truncation error of order A5, then /<4) and /<5) will appear

in the formulae for JV(n) and — A(n> . Increased accuracy of a finite difference formula

for the solution of (1) can be achieved either by increasing the number of points

in the formula, or by increasing the order of the derivatives of/involved. The former

course, with its attendant difficulties over starting values and possible instability,

can only be successfully argued if the labour involved in calculating and evaluating

higher derivatives of / is unacceptable. Since this calculation must in any case be

done in order to evaluate JV<„) and — A(n) , the case for implicit and multistep

generalizations of (6) and (9) would appear to be a weak one.
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