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1. Introduction. The mid-point quadrature formula

(U) f*)"4^T)
possesses the valuable attribute that its coefficients are equal. This provides a

convenience in computation; further, if the quantities/((2j — l)/2N) are measured,

and hence subject to random error, then, on a minimum variance basis and the

requirement that the quadrature be exact for/(x) = 1, the coefficients of the best

linear quadrature formula are equal. In some applications, equal coefficients may

be especially important. This arises, for example, in certain designs of phased ar-

ray antennas where engineering constraints imply the requirement of equal co-

efficients.

Let a weight function p(x) satisfy

(1.2) p(x) è 0, f  p(x) dx= 1,
Jo

then it is desirable to obtain an equal-coefficient formula for

(1.3) /(/) =  f p(x)f(x) dx.
Jo

The function

(1.4) L(x) =   f  p(u) du
Jo

satisfies

(1.5) L(0) - 0,       L(l) = 1

and is monotonie increasing. Let

(1.6) y = L(x),       x = G(y)

in which G(y) is the function inverse to L(x), then, defining the numbers Xi,

Xt, ••• ,Xtr by

(1.7) Xj=0(?ÍJLÍ), l^j^N,

the required quadrature formula is given by

(1.8) SAf) = ^12f(xj).
N j-i
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The sum Sn(J) is clearly a Riemannian sum for

(1.9) 1(f) = ff[G(y)] dy
Jo

and hence, if f(x) is Riemann integrable,

(1.10) lim s„(f) =/(/);

however, using (1.6) and (1.3),

(1.11) /(/) = /(/)

and hence the approximation is secured.

In order to use the quadrature sum (1.8) effectively, it is necessary to have

accurate estimates for the error RK(f) defined by

(1.12) Ä*(/) = 1(f) - &(/)•

The class of functions for which /?*(/) will be studied are those whose first deriva-

tive is of bounded variation over [0, 1] and periodically extended with period one.

At a point of discontinuity c, the value/(c) will be defined by

(1.13) /(c)=/(c+)+/(c-)>

in which the plus and minus signs indicate limit from the right and limit from the

left respectively.

Section 2 of the paper introduces and proves three theorems for the estimation

of Rit(f). Theorem 1 provides an estimate of | Rv(f) | in terms of/ (1) and the

variation Vj(/') of/'(x) over [0, 1]. The essential feature is the existence of some

order of derivative, say the rth, of L(x) which is bounded away from zero; then

(1.14) Ä*(/) = 0(N~1-llr).

The class of Stieltjes bandlimited functions, that is functions for which there

exist a constant o- > 0 and a function a(u) € BV [—a, a] so that

(1.15) f(x) =   f eiaxda(u)

is an important subclass of / (x) £ BV [0, 1]. By utilizing the representation

(1.15), Theorem 2 provides an estimate for | Rn(f) | which may be stronger than

that provided by Theorem 1. The improvement lies in the constant of the 0 in

(1.14).
The special case p(x) = 1 is not covered by Theorems 1 and 2; however, Theo-

rem 3 provides the sharp estimate

(1.16) |Bj,(/)|<; V|p.

In Section 3 an application of the quadrature theory is made to the representa-

tion of a function H(t) (— a> < t < o°) by means of an equal-weighted average

of some given function f(t, x) over the values f(t, x¡).
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2. Analytical Discussion. In order to establish the main theorems, the following

two lemmas will be needed.

Lemma 1. c„ = JY/'fa) sin [2imL(x)]dx

-♦*,(/>- 4 Ê(-i)*^.
tN k-i k

Proof. It will be convenient to introduce the function

(2.1) sMv) - ±P[g(v + ̂ )]i

thus

(2.2) S„(f,0) = «*(/)•

The function/[(?(t/)] may be expanded into a Fourier series on the interval (0, 1) ;

one has

00 00

(2.3) ñG(y)] = /(/) + 12 an cos 2my + E &» sin 2™?/,
n-l n=l

in which

(2.4) a™ - 2 f /[G(y)] cos 27m7/ %,
J»

(2.5) bn = 2 f /[G(t/)] sin 27rn7/ d?/.
Jo

Define c» , d„ by

(2.6) Cn =  Í  G'(ty)/'[(î(7y)] sin 2im7/ d?y =  f /'(x) sin [27rnL(x)] dx,
Jo Jo

(2.7) dn =  f G'(y)f'[G(y)] cos 2my dy =  Í /'(x) cos [27mL(x)] dx,
Jo Jo

then integration by parts applied to (2.4) and (2.5) yields

(2.8) On   =    ~—Cn,
wn

(2.9) bn=   *0+)-fll-),   +Id„
7T71 7T77,

The Bernoullian function

(2.10) p(y) = h-\y\,

in which {jy} designates the fractional part of y, has the Fourier series

(2.11) p(y) = i ÍÜSS-,
n-l 7m
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hence, replacing o„ , 6„ in (2.3) by their values in (2.8), (2.9), one obtains

/[G(t/)] = /(/) - - ¿ -n cos 2*ny
ir n-i n

(2.12) .

+ -12 -sin27m7/ + [/(0+) -/(l-)]p(y).
7T n-l 71

By summation of a geometric series, one has

jf £ exp (¿2wn (y + %^)) = ( -D"7* exp (i2*ny), N \ n,

= 0, N \n,

and hence, letting n = iVfc (fc > 0 integral),

(2.14) i g cos 27riVfc (y + ^F"1) -(-!)*«■ 2^%,

(2.15) i ¿ sin 27riVfc U + 2j2~ M = ( -1 )* sin 2wNky.

Equations (2.1), (2.12), (2.14), and (2.15) now yield

SAf; y) = /(/) - -i ¿ ( -1)* Cjr cos 2^fe2/
7TJV   *=1 K

(2.16) 4--if¿(-l)*^sin27rATfc7/
TriV k-i k

+ [/<o+)-/(i-)]¿|:P(!,+2i=4).

The Fourier series for p(y), (2.11), permits ready establishment of the identity

(217) §'(»+V)-'(i"+l)'
hence

«*(/; y) = i(f) - -4? £ (-D*^ cos 27riVfc7/

(2.18)
,    1   V/    ,skdNk  .   _ „.     ,/(0+)-/(l-)    /,,    .   l\

Setting y = 0 in (2.18) yields the result of the lemma.
Lemma 2. r g; 2, integral, IP(r)(x) ^ er > 0 or

W{r)(x) ^ -er < 0       for   a ^ x ^b

I  f"
=>    /   cos W(x)

I    f"
I   sin W(x)

dx

dx

r2,(r+l)/2   -1/r
r        j

¿ r2(r+1) V1/r.
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Proof. It is clear that only the inequality W r)(x) ^ «r > 0 need be considered.

The proof only for cos W(x) will be carried out since that for sin W(x) is completely

similar. The case r = 2 will be considered first. The function W'(x) is monotonie

increasing, hence it vanishes at most once in [a, b], say at x = c, then

Jí»6 pc pb
cos W(x) dx =  /   cos W(x) dx + /   cos W(x) dx.

Let 0 ^ (5 ̂  & - c be chosen, then

fib fic+S fib

(2.20) /   cos W(x) dx =  /     cos W(x) dx + /     cos W(x) dx,
Je Jc Jc+S

and hence

(2.21)

One has

(2.22)

pb I    pb

Í   cos W(x) dx    á 5 +    /     cos W(x) dx
Jc Jc+t

I     cos W(x) dx =  /     „„. . d sin W(x)
Je+5 Jc+S W (X)

= WWTT)Ldánmx)'
W'(c + S) Jc+S

in which the second mean-value theorem was used, and hence

2

W'(c + 5)

f
(2.23) cos IF(x) dx

I Jc+¡

Since

/C+J
IF"(x) dx ^ 5e2,

one obtains, from (2.21)

(2.25)

The choice

(2.26)

yields

(2.27)

f cos W(x) dx
Ô€i

5 = V2Vm

f cos W(x) dx =   2V262'
-1/2

The value of 5 in (2.26) may exceed b — c, however, in this case the inequality of

(2.27) is certainly correct since the integral always admits the estimate b — c.

Similarly choose 0 ^ ô ^ c — a, then

(2.28)
Ji*c pc—i pc

cos W(x) dx =  j      cos W(x) dx + /     cos W(x) dx,
a Ja ->c-t
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and hence

(2.29)

One has

(2.30)

and hence

(2.31)

Since

(2.32)

D.   JAGERMAN-

Jr-c pc—6
cos W(x) dx   ^    /      cos W(x)

a Ja

dx + Ô.

fic—5 pc—5 -«

I      cos W(x)dx = j      w
a W'(X)

d sin W(x)

= W'(e- 6) L     dsinWM>

pc—S

I      cos W(x) dx
Ja

<-

W'(c - Ô) '

one obtains from (2.29)

(2.33)

Hence

(2.34)

and, from (2.19),

(2.35)

-W'(c - 8) =  [    W"(x) dx ^
Jc-S

/   cós W(x) dx
Ja

I   cos W(x) dx
Ja

ôe2 ,

Ô€i '

I   cos W(x)
Ja

dx

^ 2\/2e2'

= 4V2C2
-1/2

The lemma is thus established for r = 2.

Induction will now be employed. The lemma is assumed true for r = k ^ 2.

Since ^"""'(x) > 0, Wik)(x) is monotonie increasing, and hence vanishes at most

once in [a, b], say at x = c. Choose 0 á 5 S I) - c, then

pb pc+6 pb

(2.36) /   cos W(x) dx =  /      cos W(x) dx + /     cos W(x) dx,
Je Jc Jc+S

and hence

(2.37) Í cos W(x) dx   ^ Ô +    f    cos W(x) dx
I Jc | Jc+S

The inductive hypothesis states

(2.38) /     cos W(x) dx
Jr+S

^    k^k+l,liw,k¡{c   +    s) -\lk
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hence

(2.39)

Since

(2.40)

one has

(2.41)

The choice

(2.42)

yields

(2.43)

/   cos W(x) dx
,(í+l)/ÍTir(*) Ilk

g 5 + k2y*+i"iWy"(e + a)-1".

w(*) /c+S W{k+l\x) dx è  ôek+1 ,

I   cos W(x) dx ^ ô + fc2a+I)/Wí*.

j 0t/2 -1/tt+l)
0   =  ¿     tk+1

Í   cos W(x)
Jc

dx Z (fe+l)2*'V+i(*+l;.

The inequality (2.43) remains correct even for ô > b — c.

Similarly choose 0 ^ 5 ^ c — a, then

fiC fiC~& fiC

(2.44) /   cos W(x) dx =  /      cos W(x) dx + /     cos W(x) dx,
Ja Ja Je—i

and hence

(2.45) /   cos W(x) dx
I   "

The inductive hypothesis yields

pc—0

I      cos W(x)
Ja

dx + 5.

(2.46)

Since

(2.47)

one has

(2.48)

Thus

(2.49)

/   cos W(x)
Ja

dx g 5 + k2"+v,2[-W{k,(c- 5)Tllk.

-Wik)(c - S) =   f   Wlk+V(x) dx 2: ôek+1,
Jc-S

/cos W(x) dx

Jcos PT(x) dx
o

^ 5 + k2™+"n6-1»el¿í'.

^(k + \)2kl\-kl'ik+i\
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and hence

i  pb

(2.50) cos W(x)
Ja

dx á (fc + l)2u+2,V-ÎÎ(fc+2)/2 -1/U+l)

The lemma is now established.

It is now possible to prove

Theorem 1. f'(x) € BV [0, 1], L(r,(x) è er > 0/or 0 á x ^ 1 or

L(r)(x) á -tr < 0       for 0 ^ x ^ 1,        r Sí 2 integral,

Kr = r2ir+m-llrw-1-llTi (l + jW1/r

-» | RAf) | = [| /(l) | + V (/OJ^iV-1-1'';

in which f(x) is /Äe Riemann zeta function.

Proof. As in Lemma 1, let

(2.51) c„ =   Í f(x) sin [27rnL(x)] dx.
Jo

Let

(2.52) ^(x) =  f  sin [27T7iL(w)] dTt,
Jo

then

(2.53) c„ =   Í f(xW(x) dx.
Jo

Integrating by parts, one obtains

(2.54) c„ = /(1)*(1) -  f Hx) df'(x).
Jo

Lemma 2 provides the following estimate for ^(x) :

(2.55) | Hx) | á r2Cr+1)/2-1/V-I,rfr-1/rn-1/r,

hence (2.54) and (2.55) yield

(2.56) | Cn |  Ú [|/(D I  + V (/')] 7-2(r+1)/2-1/r7r-1/rer-1/r7l-1/r.

The infinite series for RAf) m Lemma 1 may now be estimated. Using (2.56),

one obtains

(2.57)    | RAf) I = \\ f(\) I + V (/)] r2M'l-«VHV"TH" £ fc"
L o        J k-i

l-l/r

Since the infinite series of (2.57) is f(l + 1/r), the inequality of the theorem fol-

lows.



MODIFIED   MID-POINT  QUADRATURE   FORMULA 87

Theorem 2. f(x) = j-„ eiux da(u), a(u) € BV [-a, a],

Llr,(x) è er > 0   for 0 g x S 1    or   L(r)(x) g -er < 0   for 0 á 2 á 1,

r ä2 integral
a

=» I Ä*(/) I = \/2crV (a)KJV-1-1".
—a

Proof. Using the representation

(2.58) /(x) = [ eiux da(u)

one has

(2.59) /(x) = j[' «*"»« da(u)

and hence

(2.60) c„ = j  iulï eiux ún[2irnL(x)] dx\ da(u).

The inner integral of (2.60) may be written

/   e,ux sin [27mL(x)] dx = - /   sin [27mL(x) — tíx] dx
Jo 2 Jo

1   f1
(2.61) + - /   sin [27rnL(x) + ux] dx

¿ Jo

ir1 if1
+ - i /   cos [27T7iZ/(x) — Tix] dx — -i f   cos [27rnL(x) + ux] dx,

¿Jo 2    Jo

hence, using Lemma 2,

I r1 ■
(2.62) /   eux sin [27rnL(x)] dx

| Jo

Thus

I  „     I   __— „0(r+2)/2-l/r   -1/r    -1/r   -1/r    /      i        I   I  J    /. \  I
I c„ I s r¿ ir     er     n       I   \u\\da(u)\,

(2.63)
j cn |  g a V (a)r2(r+2)/2-1/r7r-1/rÉr-1/rn"1/r.

—«

From the infinite series for Rtr(f) of Lemma 1, one obtains

(2.64) | RAf) I   = <r V (a)r2(r+2>/2-1/r7r-1-1/r£r-1/rV-1-1,r¿ ft"1"1'',
-o- t=l

and hence the result of the theorem.

Theorem 3. p(x) = l,/(x) 6 BV [0, 1]

s m 7T    er    n

RAf) I =£ tV V (/)AT2.

TAe estimate is sharp.
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Proof. Since p(x) = 1, one has L(x) = x and hence

(2.65) c„ =   /   f(x) sin 27mx dx.
Jo

From (2.11), one has

(2.66) ±f [ p[Nx + ^)f'(x) dx = -i? £ ^-^- Í /(*) sin 2ttVA;x dx.
iV Jo       \ ¿/ 7rW k-l       k       Jo

After using (2.65) in (2.66) and comparing with the series for RAf) of Lemma 1,

the following integral expression for RAf) IS obtained.

(2.67) RN(f) =±£p(nx + i)f(x) dx.

The Bernoullian function

(2.68) o-(x) =  f p(u) du
Jo

is periodic with period one and satisfies

(2.69) 0 ^ o-(x) ^ |.

In terms of o-(x), one has

RAf) = ~ ji1 o- (nx + 0 d/(x)

Since

(2.71) k(ATx:+i) -^[áifV,

the inequality of the theorem follows. To show that the result is sharp, define U(x)

by

U(x) = 1,       x > 0,

(2.72) = è,       x = 0,

= 0,       x < 0,

and consider functions [1] f(x) for which

(2.73) fix) = sgn [l - x - I £ [7 (^=3 - x)] ;

then direct computation yields

(2.74) Ä„(/) = ± .

(2.70)
=  -i   f 7
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Since, one readily shows,

i

(2.75) V (/) = 4JV,
o

the proof is complete.

3. An Application. In addition to the application of the theorems of this paper

to the numerical evaluation of integrals, there are applications of theoretical and

design character. One such application is the establishment of approximations to a

function H(t) (—<*>< t < °°) by means of an equal-weight average of the values

over x of another function f(t, x). Thus let

(3.1) H(t) =   I p(x)f(t,x)dx
Jo

then one has immediately

(3.2) H(t) = SAf) + RAf).

As an example of (3.2), one may choose

(3.3) f(t, x) = cos tx.

Since

(3.4) cos tx =  I   cos ux da(u), o- St I > 0»
J—tr

in which a (tí) € BV [ — a,o-] and

a(u)  =0, u <  —t

(3.5) = h ~t á « < t,

= 1, t £ m;

one has

v

(3.6) V (a)  =  1.
— <T

Thus, a slight modification of Theorem 2 provides the following approximation

theorem.

Theorem 4. H(t) = Jo' p(z) cos tx dx

' g Kr I í I ATw/r1
H(i) — -jTf E cos txj

N i=i

î'/te same error estimate is obtained if, in place of cos tx, the function sin tx were used.
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