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On a Numerical Solution of an Integral
Equation with Singularities

By Robert G. Voigt

1. Introduction. Annular airfoil theory gives rise to Fredholm integral equations

of the second kind in the following form :

(1) f(x) = g(x) + [ G(x, y)f(y) dy,       0 ^ x :g 1,
Jo

where the kernel G(x, y) has the form

G{x,y)=f^dz,
Jo     2 —  X

and g(x) is a continuous function; in particular it may be of the form

(2) g(x) =  fr-^4dz.
Jo   z — x

For what follows, we will assume that q(y, z) and r(x, z) are continuous functions

as they would be in most physical problems; however, the results are valid for more

general functions. By using a Fourier series technique given in Collatz [1], we are

able to neatly evaluate the singular integrals involved, but as will be seen, this is

not the only advantage of the technique. We also obtain a kernel function of de-

generate type; that is

n

G(x,y) =  T,mi(x)Mi(y).

Then the integral equation may be solved using a method applicable to degenerate

kernels such as the simple one given in Mikhlin [2].

An example of thé method applied to an integral equation arising in annular

airfoil theory is included at the end of this paper.

2. Handling the Singularities. The first step in handling the singularities is to

apply the changes of variables suggested by Collatz [1]: Let

x = §(1 + cos 0),

y = 1(1 + cos¿),

8   = 1(1 + COS(p).
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Equation (1) may then be written in the form

fie) = g*io) +1 jf G*ie, ¿)/*(-¿) sin * #,

where

(+(8,4) = ['st^AÈEJP^.
Jo   cos <p — cos 0

The    is used to simplify notation, e.g.,

fix)  =/[*(! + COS 0)] nf(e).

Now we may expand q*i\f/, <e) sin <p in a Fourier cosine series obtaining

ö*(      )  =   f'£:-, O.W cos ny

Jo        cos <p — COS 0

Since q (\(/, ¡p) sin <p is a continuous function of v3, the series is uniformly convergent.

Thus we may write

g*(», ») - ¿ «.w r cosri* >.
n=0 JO   cos <p — cos o

If we now consider the Cauchy Principal Value of the integral, we have that

G* ¿ «.(») sin n0

n-i        sin 0

Since the infinite sum is convergent, we may approximate it to a prescribed degree

of accuracy with a finite sum. This yields a kernel of degenerate type.

If gix) is given by Equation (2) it may be evaluated in the same way that G(x, y)

was evaluated. Thus we obtain Equation (1) in a form free of singularities.

3. Solution of the Equation. Equation (1) now has the form

(3) A«) - g*(8) + l i' t a"W 7 n6 bin * A*)l #-
2 Jo    n=i sin 0

Proceeding with the method of solution found in Mikhlin [2] we write Equation (3)

in the form

(4) /•w-vw+jf:*?^,
2 „=i   sin 0

where

C = f   anty) sin * /*(*) cty.
Jo

Using Equation (4) in the expression for C„ we may write

C. -  /"' «.(*) sin * |>(*> + J £ **"* c 1 # * o.
Jo L ^ «-1    sin ^        J
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Since this is true for n = 1, 2, • • • , N, we have the following linear system:

(5) C„ - £ X «„,„ Cm = ßn , n = 1, 2, ■ • • , N,

where

and

ßn =   /    On(1>) sin ^ g*(ip) dip,
Jo

[   an(^)
Jo

sin m^- ép.

After evaluating ß„ and «„,„ , the system (5) may be solved for C„ . Substitution

of C„ values into Equation (4) then gives a solution to (1).

4. Example. The following equation arises as part of the solution of the problem

of finding the shape of an annular airfoil from a specified pressure distribution on

the inner and outer surfaces of the airfoil, p~ix) and p+(x), respectively [3]. The

annular airfoil has been nondimensionalized to have length 1 with the trailing edge

at 0, thus x £ [0, 1]. The equation is in the form of Equation (1) with g ix) in the

form of Equation (2) :

«■> - ,v(*à -,»{-££t*+l'[ji'f^>w4
rix,z) = V(zU - z))(^j\it)kiz,t)[K[kiz,t)\ - E[kiz, t)}] dt + *w(z)\,

«Of,») = V{Z(1 ~ 2)) {1 - k(y,z)Elkiy,z)]\.
z — y

The apparent square root singularities at x = 0 and x — 1 are removed when the

changes of variables are made since/(x) represents a first derivative; i.e., the slope

of the thickness distribution. Thus for this particular example

/(X) = __/*Wsin0

K[kiz, t)] and E[k(z, t)] are complete elliptic integrals of the first and second kind,

respectively, with modulus fc(z, i) = 1/-\/(ä2(z — t) +1). The quantity h is a

specified constant, and u(t) and w(z), which are given, depend on p~ and p+ ;

a complete discussion is given in Reference [3].

The above example has been run on the IBM-7090 at the David Taylor Model

Basin. The following table illustrates the effect of the number of coefficients on the

stability of the solution. N is the number of coefficients used in the evaluation of

the kernel function G; the next column is the number of significant places in the

integral term of Equation (1) unaffected by increasing N; M is the number of co-
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efficients used in the evaluation of g; and the last column is the number of signifi-

cant places in g unaffected by increasing M.

N M

5
10
15
20
25
30
35
40

4
5
5
6
6
6
6
6

5
10
15
20
25
30
35
40
45
50
55

2
2
2
2
2
2
3
3
4
4
4

This table indicates that a better method should be investigated for the evalu-

ation of g; however, in evaluating the kernel, the Fourier series technique seems

to be satisfactory, and it is in this part of the problem that the two-fold advantage

of the technique is realized. The present program requires less than two minutes on

the 7090 for N = 20 and M = 45.
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