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Boundedness of Difference Kernels
of Bessel and Fourier Series

By Shih-Hsiung Tung

1. Introduction. Let a» , m = 1, 2, • • • , be positive zeros of Bessel functions

•/„(x) of the first kind of order »¿ —\, arranged in increasing order. The kernels

of Bessel and Fourier cosine series on [0, 1] are denoted as

if

(1) BMix;t) =  23 2tJ,iamx)J„iamt)J7+iiam)

and

M

(2) Cu = CMix; t)  = 1 + 23 2 cos (mirx) cos (mirí)-
m=l

We define the difference kernel to be

(3) D„ix; t) = Buix; t) - CMix; t).

Two series S = 23s» and T = 23 k are said t° De equiconvergent if

.lim„-.oo (<S„ — Tn) = 0, where Sn and T„ are partial sums of the first n terms of

the series.

Here we study the boundedness (Theorems 1 and 2) of the difference kernel

and the equiconvergence (Theorem 3) of Bessel series of a Lebesgue integrable

function on [0, 1] and its corresponding Fourier cosine series. The proof of the

boundedness of the difference kernel of two series is mainly based on the applica-

tion of the asymptotic expansion of Bessel functions and their zeros. The equi-

convergence theorem, which is a direct application of Theorem 2, is a stronger

result obtained by a simple and straightforward proof comparable to the analogous

ones given in [6] and [8]. We notice that the cosine series may equally well be re-

placed by a sine or sine and cosine series.

2. Preliminaries. The following results are needed later.

Lemma 1. If a is real, 6 2: 0 and 0<n?iy — k?¿l— n<l for some integer
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k, then 23m-i»i-6 sin i2miry + a) and ^2%=im~b cos i2mny -f- a) are bounded

independently of a, y, and M.

Proof. Let y = k + f and 0<ij^f^l — ij<l. For the case
b = 0, | ¿2m-i sin i2miry + a) | 5= (sin 7rf )—1 is obtained from the formula

M

2 sin (xf)23 sin (2m7rf + a) = 2 sin (Mwf) sin [(Af -f- l)nf 4- a].

Similarly, | 23^=i cos i2miry + a) | ^ (sin irf )_1. The case b > 0 follows from the

case 6 = 0 by applying Dirichlet's test [3, p. 347].

The following result was given in [1, p. 382].

Lemma 2. 23™-i m-1 sin (m 4- a)f zs bounded independently of a, and M, where

0 ^ f = 2*- - v, n > 0 and a ^ -^
It is known that [7, p. 199], for large value of x > 0,

(4) /,(»).- y^A^cos pix) + ^¿i sin p(x) + 0(x"2)] ,

where

(5) pix) = -x + J(2v + l)i.

The with zero am of J,ix) is given by asymptotic expansion [7, p. 506]

(6) am =  im + v/2 - \)ir + ßm ,

where

(7) ßm = -,    \_~~.f    „ + 0(m"3) = OimT1).
8(ra 4- v/2 - \)

From (5), (6) and (7), for x = am , cos piam) = ( — l)m_1 cos /3m and sin p(am) =

( —l)m sin ßm . By substituting these in (4) and using (6) and (7), we obtain by

a calculation

(8) JVliiam) = fcr«»[l 4- OimT2)].

From Eqs. (4), (6) and (8), for x, t > 0 and large m, we have

bmix; t) - 2t/,(amx)/F(«m<)^7iSi(am)

= (i/x)1/2[l 4- 0(wT2)]<2 cos p(amx) cos p(am i)

2
/

"2a«
- ^s-    - sin piamx) cos p(a„i)

- ,    Lx

4- - cos piamx) sin p(ami)     4" 0(m 2)> .

For fixed x € (0, 1), we take 5 such that 0 < 5 = min (x/2, (1 - x)/2). And from

(</x)1/2 - (14- it - x)/x)112, we have

(9) (í/x)1/2= 1+ÍÍ1-I--K1 + «^T
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where 0 < 0 < 1. Here, for 11 — x [ < 8, we have

(10) 0 < d' = i(l 4- »(« - x)/xr"2 ^ 2~1/2.

Now substituting (9) into om(x; i) and multiplying out, we obtain

bmix; t) = biim) + b2(m) + o3(m) + 0(m"2),

where

5jCm> = 2 cos p(amx) cos piamt)

02<m) = - • 2 cos p(amx) cos p(a»t)

o3     = —

2

-   —— sin piamx) cos p(ami) 4- cos piamx) sin piamt)
\_am X amt J

Denoting

B„ix;t) = T,bmix;t) - ¿£*(M),
t=i

where ß*CAi) =  23»=i 6*0"' (* = 1,2,3) and B4ím =  23£_1 OimT2), and together
with (2) and (3), we have the difference kernel

(11) DMix; t) = iBiiM) - CW) + S2(Jf) 4- B3'M) + B,(M).

3. Boundedness of Difference Kernel. By examining each term on the right

hand side of (11), the following theorem shows that the difference kernel DMix; t)

of Bessel and Fourier cosine kernels on [0, 1] is uniformly bounded in a neighbor-

hood of any fixed point in (0, 1).

Theorem 1. DMix; t) is bounded independently (b.z.) of t and M at any fixed

point x 6 (0, 1) for ¿6 Nix; 8) = [x - 5, x 4- 8], where 0 < S ^

min{x/2, (1 - x)/2}.

Proof. Throughout this proof, 23 means  Cm=i •

(i) £4(M) in (11) is certainly b.i. of M and t.

(ii) To show that B3(M) is b.i. of M and t in Nix; 8). Since x ¿¿ 0 and t ^ x/2,

it is sufficient to show that 23 2am""1 sin p(amx) cos piamt) and 23 2am_1 cos

piamx) sin piamt) are b.i. of M and t. But from (5) and trigonometric addition

formulas we only have to consider

ßn° *  23 «»T1 sin («m(í + x) - a)    and    BÍf m  E "m"1 sin (am(< - x)),

where

(12) a   = i2v 4- 1)tt/2.

Now by letting

(13) r, = it + x)/2,        b = ri2v - l)it + x)/4 - T(2r + l)/2,
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and noting am = ?wir(l + Oim ')) from (6) and (7), we have

Bn} = 23 «m_1 sin i2mwv + b) cos (2ij/3m) 4- 23 »."' cos (2minj 4- b) sin (2r;i8m)

= 23 (wiir)-1 sin (2mirr; -f- b) -f 23 OimT2).

Thus, from Lemma 1, B3Î0 is b.i. of M, n and b; therefore, it is b.i. of M and t in

Nix; 8). Next, for t € N(x; 8), by setting

(14) f = r(i - x),       a = (2r - l)/4

we similarly have

BÍ?> = 23 «m_1 sin ((to 4- a)f) cos (/S«f/*) 4- E a-""1 cos ((m -f o)r) sin (j8mf/ir)

= E (m)"1 sin ((to + a){) + E 0(to-2).

It follows, from Lemma 2, that B¡2} is b.i. of M, a and f for t in 2V(x ; 8). Therefore,

£3<Jl" is b.i. of M and t in N(x; 8).

(iii) Next we consider B2lM\ By a trigonometric addition formula

B2W = (o'(í-x)/2)Ecos(am(í4-x) -0') + ((¿-x)ô7x)Ecos(am(i-x))

=   ¿>21       4"   #22     •

By means of (6) and jj and b defined in (13), we have

cos (am(i:4- x) — a) = cos (2to7t?7 4- b) cos i2ßmn) — sin (2to7tjj 4- 6) sin (20ott)).

Here, noting sin (2/3mrj) = ij(l — 4j'2)(4mir)~1 4- 0(to~2) and cos (2/3mi?) = 14-

0(to-2) from (7), therefore by Lemma 1, B2?} is b.i. of M and t in AT(x; 8). Next,

from (6),

Bm ' - irf/*x)T, cos ((m + o)r) cos (|8»í/t)

- (fö'M)E sin Um 4-a)f) sin (j8mf/ir),

where a and f are defined in (14). From cos ißJZ/ir) = 14- OimT2) and

I (f0'M)E cos Urn + a)() I = I n7(« sin (f/2)) |,

which is bounded for 0 < | f | = wô ¿ ir/4, since | (f/2)/sin (f/2) | is bounded,

it follows that the first sum of B22} is b.i. of M and f. The second sum of B22) is

b.i. of M and f by Lemma 2, by noting sin (/3mf/ir) = f (1 — 4v2) (8to.it)-1 -f- Oim"2).
Hence £2(Jtf) is b.i. of M and í in Nix; 8).

(iv) Lastly, we consider BiM) — CM ■ Write as in (ii)

Biiu) - CM = E cos (a„(l 4- x) - a') + E cos («„(I - x))

— [1 4- E cos («w(i 4- x))] — E cos (mir(¿ — x))

= h + h- It- It.

Here 7i is bounded similarly as B2iy in the case (iii) and Is is bounded by Lemma

1 because 0<38 = i4-x = 2 — 38 < 2; both b.i. of M and í in Nix; 6). Now

h — U =  E cos ((to 4- a)f) cos ißmt/*)

— E sin ((to 4- a)f) sin (j8mf/V) —  E cos (?wf).
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The boundedness of the second sum was a case in (iii). Now noting cos ißmi/v) =

1 4- 0(to-2), we can write

E cos ((w. 4- o)f) cos (/3mf/x) - E cos .(»if ) = B* + E 0(to~2),

where

B* = E [cos ((to 4- a)f) — cos (mf)]

= -2 sin (af/2)E sin ((to 4-a/2)f).

Hence, by Lemma 1,

\Bi*\ á |2sin(af/2)/sin(f/2) |

which is bounded on 0 < | f | = irS ^ ir/4, since a = (2v — l)/4. Therefore,

Bi(AO - CV is b.i. of M and í in AT(x; 8).

(v) Thus, from (i)-(iv), D«(x; i) is b.i. of M and í in iV(x; 8) c (0, 1) with

8 = min jx/2, (1 — x)/2}. This completes the proof of Theorem 1.

Now we show the boundedness of Duix; t) on [0, 1] for any fixed x in (0, 1).

From (2)

M M

Cm = Cuix; t) = 1 4- E cos (to7t(£ 4- x)) 4- E cos (toit(£ — x)),
m=l m=l

and hence by Lemma 1, CM is b.i. of M and t on [0, x — 8] U [x 4- 8, 1] for every

fixed x in (0, 1). Also from an inequality in [7, p. 584]

BmÍx; t) | =
4 d2tw

tc* | Í2 - x21 (2 - x - i)*,/2 '

where c and d are positive constants, 0<x<l,0 = /_- 1 and x ¿¿ t. Hence

BMix; t) | =
id2

TTCWil   -   X)X1/2 '

that is, Bu is also b.i. of M and t on [0, x — 8] U [x 4- 8, 1] for fixed x in (0, 1).

Combining the above results with Theorem 1, we obtain

Theorem 2. Z>M(x; t) is b.i. of M and t on [0, 1] for any fixed x in (0, 1 ).

4. Equiconvergence. The Riemann-Lebesgue theorems for Fourier series [5,

p. 403] and Bessel series [7, p. 589] are respectively as follows:

Let / be Lebesgue integrable on [0, 1]. For x in (0, 1) and 8 > 0, we denote

A = [0, 1] - (x - 8, x 4- 8). Then

/ fit)Cuix;t) dt-*0   as    Af->«.
•>A

If/a tll2fit) dt converges absolutely, then

(15) | fit)BMix; t) dt -> 0   as    M-»cc.

Hence by taking fit) = 1

/  Buix; t) dt -> 0   as M -> ce.-
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Then, by means of a general convergence theorem in [2, p. 425], (15) follows for a

Lebesgue integrable function /.

Also from (3), we immediately obtain

(16) / fit)DMix; t) dt -> 0   as
Ja

M

We also need the absolute continuity of the Lebesgue integral [4, p. 148]. Let

« > 0, there exists a 8 > 0 such that for every measurable set e d E of measure

me < 8, the inequality /„ [fit) [dt < e holds.
With these preliminary results we obtain the equiconvergence theorem of

Bessel and Fourier cosine series as follows.

Theorem 3. Let f be Lebesgue integrable on [0, 1]. Then the Bessel series of f is

equiconvergent with its Fourier cosine series at every point x Ç (0,1 ).

Proof. Set

B
f1

M*ix;f) =   /  fit)BMix; t) dt,
Jo

CM*ix;f) =   í fit)Ciiix;t)dt.
Jo

Then we are to show that

D„*ix;f) =   ( fit)Duix;t) di-► 0    as    M->o>.
Jo

From Theorem 2 we know that | DMix; t) \ _ K for all M and t G [0, 1] and fixed

x £ (0, 1). For any e > 0, from the absolute continuity of Lebesgue integral,

there exists a 8 > 0 such that

(17) /a.l*H*<¿.

where A' = [x - 8/2, x -f- 8/2]. Denote A* = [0, 1] - A'. Hence, by Theorem 2

andEqs. (16) and (17),

D„*ix;f) | = I f  fit)DMix;t) dt   + I Í  fit)DMix;t)
Ja' Ja«

dt

< e/2 4- e/2 = t

for sufficiently large M, which completes the proof.

Here we notice that the cosine series may equally well be replaced by a sine

or sine and cosine series.
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On a Numerical Solution of an Integral
Equation with Singularities

By Robert G. Voigt

1. Introduction. Annular airfoil theory gives rise to Fredholm integral equations

of the second kind in the following form :

(1) fix) = gix) + [ Gix, y)fiy) dy,       0 ^ x :g 1,
Jo

where the kernel G(x, y) has the form

Gix,y)=f^dz,
Jo   z — x

and gix) is a continuous function; in particular it may be of the form

(2) gix) =  fr-^4dz.
Jo   z — x

For what follows, we will assume that qiy, z) and r(x, z) are continuous functions

as they would be in most physical problems; however, the results are valid for more

general functions. By using a Fourier series technique given in Collatz [1], we are

able to neatly evaluate the singular integrals involved, but as will be seen, this is

not the only advantage of the technique. We also obtain a kernel function of de-

generate type; that is

n

Gix, y) = T,miix)Miiy).

Then the integral equation may be solved using a method applicable to degenerate

kernels such as the simple one given in Mikhlin [2].

An example of thé method applied to an integral equation arising in annular

airfoil theory is included at the end of this paper.

2. Handling the Singularities. The first step in handling the singularities is to

apply the changes of variables suggested by Collatz [1]: Let

x = §(1 4- cos 6),

y = 1(1 + cos¿),

z = è(l 4- cosíp).
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