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1. Introduction. In this paper a procedure is described for deriving interpolatory

type quadrature formulas by inverting linear systems of differentiation formulas.

Because interpolatory type quadrature formulas are uniquely given in terms of

the interval of integration and the interpolating points (see Krylov [6]), no new

integration formulas result. By carrying along the remainder terms for the differ-

entiation formulas, remainder terms for the quadrature formulas can be obtained.

Using this procedure a sufficient condition is given for a quadrature formula to

have a remainder of the form Af/Cn)(£), where / is the function being integrated

and M is a constant. This is equivalent to the statement that the formula is simplex

(see Daniell [8]). Applications of this sufficiency condition are made, and in par-

ticular a fairly thorough investigation of the formulas having form

(1.1) ¡_J(t) dt-Cof(-l) + &/(«) + df(ß) + C,/(l)

is made for —1 < a -^ .. < 1.

2. Numerical Differentiation Formulas. Let t/(x)6 C+1 [a, b]. The Lagrange

interpolation formula with remainder, which interpolates y(x) at the n + 1 dis-

tinct points Xo, X\, ■ ■ ■ , x„ £ [a, b] is given by (see [1], [2], [3], [6], or [7])

(2.1) y(x) = ¿ IftoH + En(y; x),
1=0

where y¡ = y(x¡) and

(2.2) Z/(x)=   n  ^~-v
k-*0;k& (Xj —  Xkj

The remainder term En(y; x) can be expressed in terms of a divided difference as

(using notation of [1])

(2.3) En(y;x) = irn(x)y[xo, Xi, • • • , x„ , x],

where tt„(x) = (x — x0)(x — Xi) • • ■ (x — x„), or in terms of an (n + l)st deriva-

tive as

(2.4) En(y; x) = 7r„(x) ^"[^ ,
(n + 1)!

where min (x0, • • ■ , x„ , x) < £(x) < max (x0, • • ■ , x„ , x). In most of the analysis

we will choose to use the remainder term as it appears in (2.3).

In the following P„ is the linear space of dimension n + 1 consisting of all real
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polynomials of degree less than or equal to n. An immediate consequence of the

Lagrange interpolation formula is

Lemma 2.1. The nth degree polynomials hn(x) for k = 0,1, ■ • ■ , n given by (2.2)

form a basis for Pn •

Using the notation

d/(x) = g ',"(*),(2.5)

and differentiating (2.1) we get

(2.6) y'(x) = ¿d}n(x)7yJ + Än'(x),
j-0

where

(2.7)    Rn'(x)   =  7T„'(x)7/[xo, ■ • • , x„ , x]  +  irn(x)y[xo, • • • , xn , x, x].

A second lemma of importance is now given.

Lemma 2.2. The (n — l)st degree polynomials d,"(x) forj = 0, 1, • ■ • , n span

the space Pn-i, and any n of these n + 1 polynomials form a basis for P„_i.

Proof. Every polynomial q € P„_i is the derivative of a polynomial p G P„ .

Thus for any q 6 P„_i

q(x) = p'(x) = do"(x)p(xo) + di"(x)p(x,) + ••• + d„n(x)p(x„).

Hence d/"(x) for j = 0,1, • • • , n span P„_x. Since 1 £ P„ we know that

do"(x) + din(x) + • • • + a\n(x) = 0.

Thus d*"(x) = — /.!"=()• i** dy"(x), which implies that any set do"(x), • • • , d"-i (x),

d"+i(x), • • • , d„n(x) is a basis for P„_i. This proves Lemma 2.2.

Let zo, Z\, ■ ■ ■ , z„ be n + 1 distinct points in [a, b] not necessarily equal to the

Xj's defining the Z;n(x)'s. If we evaluate (2.6) at these z<'s we get the following

system of n + 1 equations:

(2.8)

y'(zo)  = don(z0)yo + di"(zo)?yi + • • • + dnn(z0)yn + P„'(z0)

y'(zi)   = d/(zi)7/0 + din(z,)7yi + • • • + dnn(zi)yn + Rt (zx)

y'(zn) = don(zn)yo + di"(zB)?yi + • • • + dnn(zn)yn + Rn'(zn).

Recall that yk — y(xk).

The (n + 1) X (n + 1) matrix

(2.9) W =

don(zo)    di*(z0)

don(zi)    din(zi)

[d0n(z„)   din(z„)

d„n(z0) '

d„B(zi)

d„B(zn)
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is the matrix representation of the operator d/dx on Pn with respect to the basis

(2.10) Lkn(z) =    Ê    (^—^-) for fc = 0, 1, • • • , n.
i~0;i*k \Zj —  Zk/

Thus as a corollary to Lemma 2.2 we have

Corollary 2.2. The rank of W is n and every n X n submatrix of W is non-

singular.

Proof. It is quite clear from Lemma 2.2 that the rank of W is n. Consider now

for 0 á i',j ^ « the submatrix

f doB(zo)      • • •     d;_,(zo)        diViU)       • • •       dnB(zo) 1

(2.11)
doB(z,-i)     • • •    dB-i(zi-i)     d,B+i(z,-i)     • • •     dn"(zi-i)

don(zt+i)     • • •    dB-i(z¿+i)     dB+i(z,+i)     • • •     d„B(z,+i)

[   doB(zn)     • • •     dB-i(z„)        d?+1(zB)       ■ ■ •      a\n(zn) .

The columns of this matrix are the components of dkn(z) with respect to a basis of

Lagrange coefficients using z0, • • • , z<-i, z<+i, • • • , z„ for interpolating points.

Thus by Lemma 2.2 these columns are linearly independent and hence the matrix

is nonsingular. This proves the corollary.

3. Derivation of Quadrature Formulas. If we let y(x) = /*„ f(t) dt and we drop

the first equation in (2.8) we get the system of equations

(3.1)

du    dw

d21       (fa

dnl      d„2

din

d2n

dnn

C1 f(x)óX

r*t

I     KX)
»In

•'jn

dx

f(x) dx

f/(Zl)   -  Rn'(zi>

f(Zi)   -   Rn'(Zi)

f(zn)   -   Rt(Zn),

Here we have used the notation d¿¿ = d¡n(zi) for 1 ^ t,; ^ n.

Let D = (da) be the n X n matrix in (3.1) and let D,-,- be the (i, j)th cofactor

of the matrix D. Since by Corollary 2.2 we know D is nonsingular we get the follow-

ing theorem by applying Cramer's Rule to (3.1).

Theorem 3.1. The n X n system of equations (3.1) can be solved to obtain the

integration formulas

(3.2) Í   f(x) dx = 12 C7kf(zi) + RÁf, xo, xk)

for k = 1, 2, • • • , n where

Dik
(3.3) Cik =

det (D)
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and

(3.4) Rn(f;xo,xk) = -Í2CnikRt(zi).
i-l

The tenn Rn(f; x0, xk) is the remainder term for the integration formula. It is

interesting to note that we obtain the remainder for this integration formula by

applying the integration formula to the negative of the remainder term for differ-

entiation.

A formula is said to be exact for a specified function if the remainder term is

zero for that function.

Lemma 3.2. Formula (3.2) ís exact when f is a polynomial of degree n — 1 or

less.

Proof. Since the differentiation formulas in (2.8) are exact when y(x) is a

polynomial of degree n or less, the integration formula (3.2) obtained from (3.1)

will be exact when/(x) is a polynomial of degree n — 1 or less.

Lemma 3.3. The coefficients C% given by (3.3) can also be found by

n(3.5) C% =  [" L,n~\z) dz for j = 1,2,

where

(3.6) Lr\z) = ft r—^4 •
i-\;i*i \Zj — Zi)

Proof. Since (3.2) is exact for polynomials of degree n — 1 or less we may put

f(z) = Lj*~ (z) and know that

(3.7) ¿ Cnik Lr\zi) =  H Lr\z) dz.

Noting that L;"_1(z,) = 0 if j ^ i and L"~1(zj) « 1 we get (3.5). This proves

the desired lemma.

From Lemma 3.3 we learn that formula (3.2) does not really depend on any

of the x¿'s forming the system of equations (3.1) except xo and xk. For this reason

we will take x,- = z¿+i for 1 á ♦ á » - 1. Note that if the upper limit, Xk , of the

integration is not one of the z.'s we may take k = n, because x„ is not restricted

to be one of the z.'s.

Hence if x,- = z,+i for 1 ^ i ^ n — 1 term ir„(x) in (2.3) becomes

(3.8) ir„(x) = (x — Xo)(x — Zi) ■ ■ ■ (x — z„)(x — xn).

For convenience in what is to follow we will write 7r„(x) = tt„_i(x)(x — x„),

where

(3.9) ir„_i(x) = (x - x0)(x - zi) ■ ■ ■ (x - z„).

Thus the remainder terms for differentiation at the z.'s are

(3.10) Rn'(zi) = 7r'._i(z<)(z¿ - xn)y[xo, z2, ■ ■ ■ , zn , xn , z,-]
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for 2 ^ i ^ n and

ßn'(Zl)   =   Vn'(Zl)y[Xo , Zi,   ■ ■ ■   ,Zn,Xn,Z1]

(3.11)
+ 7T„(Zi)7y[Xo , Z2 ,  • • •   , Z„ , X„ , Zi , Zi].

For our purposes we will modify (3.11). Note that

1T„(zi)7/[Xo , Z2 , • • ■  , z„ , Xn , Zi , zj

(3.12)
-    7r„_i(Zi){7/[x0 ,   Zi ,   • • •   ,   Z„ ,   Zi ,   Zi]   -   7/[Xo ,   Z2 ,   • • •   ,   Z„ ,   X„ ,   zj},

and 7t„'(zi) = 7t„-i(zi)(zi — x„) + irn-i(zi). Hence (3.11) can be written as

Rn'(Zl)   =  ir„_l(Zl)(Zl  - Xn)y[Xo , Zi ,  ■ ■ ■  , z„ , x„ , Zi]

(3.13)
+ 7rn-i(zi)7/[x0, Z-i , ■ ■ ■ , Z„ , Zi , Zi].

Using (3.10) and (3.13) in (3.4) we get

n

Rn(f; X0 , Xjfc)    =    — Ç Cik1Tn-l(Zi)(Zi   ~   Xn)y[x0 ,  Zi ,   ■ ■ ■   ,  Z„ , Xn , Zi]

(3.14) *=1
— Cûir„_i(zi)7/[xo, z2, • • • , z„ , Zi, Zi].

4. A Simplex Sufficiency Condition. In [8] Daniell studies remainders for inter-

polation and quadrature formulas. In this paper he defined simplex formulas. This

definition is (see also Kunz [7]) :

Definition 4.1. A formula is said to be simplex of order m, if

(1) The formula is exact for polynomials of degree m — 1 or less and not exact
for xm.

(2) If the formula is exact for any function/ £ Cm[a, b], then fm)(x) = 0 for

some x € [a, b].

From [7] or [8] we learn the following about the formulas given by (3.2) :

Lemma 4.1. The integration formula

(3.2) [ " f(x) dx = ¿ C7k f(zi) + Rn(f; x0, xk)
•>x0 <=1

is simplex of order n if and only if

(4.1) Rn(f;Xo,Xk) = M/(B)(£)

where | is some point in [a, b] and M is a nonzero constant.

Since dnx"/dxn = n!, Daniell [8] shows that in (4.1)

(4.2) M =  1i ( H x" dx - ¿ C?* zA .
n! [Jx„ i=i j

We are now in position to prove the following theorem which gives a sufficient

condition for formulas of type (3.2) to be simplex. For convenience in stating this

theorem we have defined z„+i to be x„ in (3.14). Recall also that in (3.14)

7T„_i(x)  =   (x — X0)(X — Zi)  ■ ■ ■  (x — z„).
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Theorem 4.2. If for s = 1,2, • • • ,nthen quantities

(4.3) (z,-Z¡+1)Í2C7kTr'n-ÁZi)
i-l

have the same sign, and Cu7r„_i(zi) is zero or has this same sign, then

n

(4.4) Rn(f; xo, xk) = — y[xo, Zi, ■ ■ ■ , «n , i, ij] C C^irt (zi)
«=i

where t„(x)   =  irn-i(x)(x  — z„+i), z„+i  =  xn , and min (zx, • • • , zn+1)   ^  £,

Tj ̂  max (zi, • • • , z„+i) ; which implies formula (3.2) is simplex of order n.

Proof. Repeating (3.14) here we have

n

R„(f; x0,Xk) = — 12 CB*7r„_i(z¿)(z< - zn+i)y[xo, z2, • • • , z„ , zn+i, zj

(4.5) «'->

—  CÛ7r„_l(Zl)7/[Xo , Z2 ,  • • •  , Zn , Zl , «J.

Considering one term in the summation we have

C"*7r„_i(z,-)(zj — z„+i)t/[xo , z2, • • • , z„ , zn+i, zj

(4.6) ,
=   C7kir„-i(zi){y[xo, z2, • • ■ , z„ , z<]   —  y[x0, z2, • ■ • , z„ , z„+i]}.

By telescoping

y[Xo , Zi ,  • • •  , Z„ , Zi]  —  y[x0 , Zi ,  • ■ ■  , Zn , Zn+l]

(4.7) »
=   12 {y[X0 , Zi ,  ■ ■ ■  , Zn , Zs]  - 7/[Xo , Zi ,  ■ ■ ■  , Zn , Zs+i]}.

B—i

Now note that

7y[xo, Z2, • ■ • , z„ , z„] - y[xQ, z2, • • • , z„ , z.+i]

=   (zs   —   zs+i)7y[xo,   Zi, • ■ ■ ,  zn ,  z> ,   za+i].

This gives

y[X0 , Z2 ,   ■ ■ ■   , Zn , Zi]   —   y[Xo , Z2 ,   ■ ■ ■   , Zn , Zn+l]

(4.8) »
= 12 (2» — z3+i)y[xo, Zi, ■ ■ ■ ,zn,z,, z,+i].

8=i

Using (4.8) and (4.5) we get

n n

Rn(f; Xo, Xk) = —12 Cn(b7r„_i(z,) 12 (zs — z,+i)y[xo, z2, ■ • • , z„ , z,, z,+i]
1=1 s™*

-      Cu7r„_i(Zi)7/[Xo ,     Zi,---   ,     Zn,     Zl,     Zl].

We now use the fact that X^"-i a<2n=¿ &« =  E<-i b,12i=i a,-. This gives

n

P„(/; Xo , Xk)   =   — 12 y[Xo , Zi ,  ■ ■ ■   , Zn , Z, , Zs+l]
»-1

(4.9)
• (z„ — z,+i) 12 C7kv'n-i(zi) — C7kirn-i(zi)y[xo ,Zi, ■ ■ ■ , z„ , zi, «J.

¿=i
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Hence if (z, — z,+i) 12i-i C7kir'n-i(zi) do not change sign (some of these terms may

be zero) and CB*7r„_i(zi) has this same sign or is zero

Rn(f, xo , xk) =  -y[xo ,Zi, ••• , z« , £, v]

(4.10)
12 (z. — Z.+l) 12 C7kir'n-i(Zi)  + CB*7rn-i(zi)> ,
8=1 i-l J

where min (x0, zi, • • • , zn+i) Si £, n è max (x0, Zi, • • • , zn+i). Noting that

n a n

(4.11) 12 (2»    —   z,+i) 12 C7kir'n-i(Zi)    =    12 C?k-r'n-i(zi)(Zi   —   z„+i),
»-1 i-l <=1

Xk = z*+i for 1 ^ fc ^ n, and that 7r„(x) = ir„_i(x)(x — z„+i) we get

n

(4.4) Rn(f; xo, xk) = -y[xo, z2, • • • , zn , £, v]12 CVn'(z<).
»=1

Recalling that y(x) = jx„f(t) dt where/ G C"[a, b] gives

(4.12) t/[xo ,*,•••, fc , È, il - /    In,/"'^).
(n + 1)!

where min (x0, Zi, • ■ ■ , z«+i) ^ x ^ max (x0, z¡, • • • , z„+i). Thus (4.12) in

conjunction with (4.4) implies the integration formula (3.2) is simplex.

In applying Theorem 4.2, since the terms (4.3) and Cu7r»_i(zi) must be com-

puted anyway, the constant multiplying — y[x0, z2, • • • , z„ , £, 17] in (4.4) is just

the sum of Cu7r„_i(zi) and the terms in (4.3). This is seen to be true by (4.10).

5. Examples of Closed Type Formulas. Consider as the first example Simpson's

Rule

(5.1) r2/(¿)dí~J{/(ao) +4/Ui) +f(Oi)},

where a, = a0 + ih for i = 0, 1, 2. Since it is easy to check that Simpson's Rule is

of order four, we know that corresponding to the formula (3.2) Simpson's Rule

can be written in the form

(5.2) P f(t) dt = ¿ Clttzi) + P4(/; zi, zi),
Jzi i-l

where

4

(5.3) ß4(/; zi, zi) = —12 Cuiri(zi) (zí — z&)y[zi, • • ■ , z6, z,].
,=1

Here we have taken zx = x0 = a0, Z2 = Zi + h, z3 = zi + -|A, za = Zi-\- 2h, and

z6 = zi + ih. Note z3 < z6 < zt. By pairing up the Cu's with Simpson's Rule we

get CÍ4 = ih, C\< = ih, CU = 0, CU = h/3.
Since Zi = Xo,

(5.4) TTs(z)   =   (Z  -  Zi)(z  — ZÍ)(Z  -  Z3)(Z  -  Zi),

and we have 7r3 (zi) =  —3/i3, 7r3 (z2) = J/13, tt3 (z3) =  —%h and ir3 (zi) = h . We
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now see that Theorem 4.2 applies because

i
(zi - zi)12 Cuir3'(Zi) = hb,

i—l

(z2-z3)¿CW(z<) = \hh,
i-l

»=i

(z4-z6)¿CW(z.) =0,
t-i

and Ci4ir3(z1) = 0. Hence for Simpson's Rule

(5.5) Ri(f; zo , Zi) = -y[zi, Zs , Zs , z4 , ¿, tjJ-É-A6,

where Zi á £, *? = Zi + 2/i. If we use the fact that y[zi , z2 , z3 , z4 , £, tj]  =

(1/5!) fw(x) for zi g x ^ zi + 2h we get

(5.6) ß3(/;zo,z4) = -^/(4>(x).

Note that since 12\-i Cuiri(zi)  = 0 it does not matter what values z5 has, be-

cause the only place z$ enters in is in the term, see (4.9),

4

y[Zl ,Zi,Z3,Zi,Zi, Zi](Zi - ZS) 12 C\iTi'(Zi)
i-l

and this term is zero.

For the second example we consider the general four point closed quadrature

formula

(5.7) ¡_J(x) dx~Cof(-D + Cif(a) + df(ß) + C,/(l),

where — 1 < a < ß < 1. The coefficients C, are given by

(5.8) d = ¡_ Lt(s) ds,

where

(5.9)

,,  . (s - a)(s - ß)(s - 1)

Lo(S) -       -2(1 +a)(l+ß)    '

T >(.\ (s +  1)(S- ß)(s-  1)

U W - (a + 1)(« - «(a -  1)'

j  i,   v (S+  l)(s  -  «)(8  -   1)

^W -  O3+l)0S-a)Oî-l)'

r 3, v        («+ 1)(» - a)(s - fl)
Ls CS) 2(1 - «)(1 - ß)        ■
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Carrying out the integration in (5.8) gives

r 2—    ■ --2<4

(5.10)

C,

d =

c3 =

2(1 + «)(1 + ß)

_1
(a + l)(a - ß)(a

_1_
(ß + 1)08 - a)(ß - 1)

[-|(l + a + í

ruß']-

B4
2(1 -Lr__[-¡(_1 + a + ,)+2a,]

From Theorem 4.2 the sufficient condition for these formulas to be simplex of order

four is that

(5.11)

(a)

(b)

(c)

[-1(1 + a + ß) - 2aß],

[-1(1 + a- ß) - 2aß],

[-1(1 - a- ß) - 2aß]

do not change sign. The fourth term is zero and need not be considered, as is also

C0T,(-1).

By setting the terms in (5.11) equal to zero we can divide the triangle — 1 < a,

ß < 1, a < ß up as shown in Figure 5.1. Excluding the Unes a = ß, a = — 1, and

ß = 1, the disjoint shaded region indicates where (a), (b), and (c) of (5.11) have

the same sign. Thus any point (a, ß) in this shaded region corresponds with a

simplex formula (5.7) of order four. The point ( —1/\/3, l/\/3) corresponds with

the Gauss-Legendre quadrature formula for two points, which is known to be

(" V3",V?

(-1, -1)

Figure 5.1
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simplex of order four. Similarly the points (a, ß) in the shaded region and on the

lines a = 0 or ß = 0 correspond with Simpson's Rule.

In [5] Bragg and Leach have an example in Section 4 which indicates that on

the line ß = 2a + 1 the formulas are simplex of order four. In Figure 5.1 this line

is shown, and it is quite clear that the line enters the unshaded region. This indi-

cates that the conditions defining the shaded region are really only sufficient

conditions.

Since the rath divided difference of a polynomial of degree ra is a constant, if the

sum 127=1 C7kTn'(zi) in (4.4) equals zero we know the formula under consideration

has order greater than or equal to n + 1. If we solve for a and ß so that for formula

(5.7)

Coiri(-l) + Cirri (a) + CW(/3) + <W(1)  = 0

we get the curve ß = — l/5a. On this curve the formulas are of order five except

at the point ( —1/\/5, l/\/5), which is known (see [8]) to be simplex of order six.1

All other points in the triangular region correspond to formulas of order four.

6. An Example for an Open Type Formula. As an example for open type formulas

consider

f(t) dt~^{Uf(Zi)  +f(Zi)  +/(Z3)   +  11/(Z4)},

where z< = x0 + ih for i = 1, • ■ • , 5. Hence for this example irn_i(x) = 7r3(x) =

(x — Xo)(x — zi)(x — zi)(x — zi). Also ir„(x) = ir4(x) = (x — x0)(x — z2) •

(x — zi)(x — zi)(x — zi).

Thus we have t3'(zi) = 5ft3, 7r3'(z2) = 4ft3, 7r8'(z3) = —3ft3, ir3'(z4) = 8ft3, and

ir3(zi) = —3!ft4. Also for this example C44 = M^, C24 = ^ft, CU = -f^h, and Cti =
561

Applying Theorem 4.2 we have

(zi - Zv)CUi(zi) = (-AXWA4),

(6.2) (zi - z3)[CW(zi) + CUi(zi)] = (-A)(W + î)h\

(z3 - z4)[CW(zi) + C447r3'(z2) + C\iiri(zi)] = (-ft)(W + t - î)h\

and

(* - *)[CW(*i) + • • • + CWtzO] = (-A)(W + f - I + W4.

These quantities are all seen to be negative and C44x3(zi) = —^ft5 is also negative.

Hence we have from Theorem 4.2 that

(6.3) Ri(J, xo, h) = y[xo ,Zi,zs,Zi,S, ,][4^ + 3f - 2| + ^ + -5^}ft5

or

(6.4) ñ3(/, xo, x6) = H^tfyfao ,Zi,Zi,Zi,i„ n].

1 I am indebted to the referee for pointing out the existence of this curve.
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Using now the fact that y[x0 ,z2,z3,Zi,%, n] = /(4>(x)/5! for x0 Ú x ^ z5 we have

(6.5) R3(f,xo,xb) = T^ft5/(4)(x).
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